【題目】為了加強公民的節(jié)水意識,合理利用水資源,各地采用價格調(diào)控等手段引導市民節(jié)約用水。某市規(guī)定如下用水收費標準:每月每戶的用水不超過6時,水費按正常收費;超過6時,超過的部分收較高水費。該市某戶居民今年2月份的用水量為9,繳納水費為27元;3月份的用水量為11,繳納水費為37元。

(1)求在限定量以內(nèi)每噸多少元?超出部分的水費每噸多少元?

(2)若該市某居民今年4月份的用水量為13. 則應繳納水費多少元?

【答案】(1)在限定量以內(nèi)每噸2元,超出部分的水費每噸5元;(2)應繳納水費47.

【解析】

1)設在限定量以內(nèi)每噸x元,超出部分的水費每噸y.根據(jù)2月份和3月份的繳費情況列出xy的二元一次方程組,求出xy的值即可;
2)直接利用(1)中結(jié)果求出答案即可.

(1)設在限定量以內(nèi)每噸x元,超出部分的水費每噸y.

依題意得:

解得

因此在限定量以內(nèi)每噸2元,超出部分的水費每噸5.

213-6=7(), 6×2+7×5=47(),

因此應繳納水費47元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知將一副三角板(直角三角板ABC和直角三角板CDE,∠ACB90°,∠ECD60°)如圖1擺放,點D、AC在一條直線上,將直角三角板CDE繞點C逆時針方向轉(zhuǎn)動,變化擺放如圖位置.

(1) 如圖2,當∠ACD為多少度時,CB恰好平分∠ECD?

(2) 如圖3,當三角板CDE擺放在∠ACB內(nèi)部時,作射線CF平分∠ACE,射線CG平分∠BCD,如果三角形CDE在∠ACB內(nèi)繞點C任意轉(zhuǎn)動,∠FCG的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

(3) 如圖4,當三角板CDE轉(zhuǎn)到∠ACB外部時,射線CF、CG仍然分別平分∠ACE、∠BCD,在旋轉(zhuǎn)過程中,(2)中的結(jié)論是否成立?如果結(jié)論成立,請說明理由;如果不成立,請寫出你的結(jié)論并根據(jù)圖4說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ACyx+2分別交x軸和y軸于A,C兩點,直線BDy=﹣x+b分別交x軸和y軸于B,D兩點,直線ACBD交于點E,且OAOB

1)求直線BD的解析式和E的坐標.

2)若直線yx分別與直線ACBD交于點HF,求四邊形ECOF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當△BDM為直角三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(20)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標為4,直線CDy軸相交于點E

(1)直線CD的函數(shù)表達式為______;(直接寫出結(jié)果)

(2)x軸上求一點P使△PAD為等腰三角形,直接寫出所有滿足條件的點P的坐標.

(3)若點Q為線段DE上的一個動點,連接BQ.點Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的y軸上?若存在,求點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種對正整數(shù)n的“F”運算:①當n為奇數(shù)時,Fn)=3n+1;②當n為偶數(shù)時,Fn(其中k是使Fn)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行,例如,取n13,則:n24,則第100次“F”運算的結(jié)果是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc0)與直線l都經(jīng)過y軸上的同一點,且拋物線L的頂點在直線l上,則稱次拋物線L與直線l具有一帶一路關系,并且將直線l叫做拋物線L路線,拋物線L叫做直線l帶線”.

(1)若路線”l的表達式為y=2x﹣4,它的帶線”L的頂點的橫坐標為﹣1,帶線”L的表達式;

(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有一帶一路關系,求m,n的值;

(3)設(2)中的帶線”L與它的路線”ly軸上的交點為A.已知點P帶線”L上的點,當以點P為圓心的圓與路線”l相切于點A時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同時拋擲AB兩個均勻的小立方體(每個面上分別標有數(shù)字1,2,3,4,5,6),設兩立方體朝上的數(shù)字分別為x,y,并以此確定點P(x,y),那么點P落在直線y=-2x+9上的概率為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點在數(shù)軸上對應的數(shù)為,點對應的數(shù)為,之間的距離記作AB.

已知a=-2ba12,(1)則B點表示的數(shù)是_____;

(2)設點在數(shù)軸上對應的數(shù)為,當PA-PB=4時,求的值;

(3)若點M以每秒1個單位的速度從A點出發(fā)向右運動,同時點N以每秒2個單位的速度從B點向左運動。設運動時間是t秒,則運動t秒后,

用含t的代數(shù)式表示M點到達的位置表示的數(shù)為_____, N點到達的位置表示的數(shù)為_____;

t為多少秒時,MN之間的距離是9?

查看答案和解析>>

同步練習冊答案