【題目】觀察以下等式:

1個等式:23-22=132×11;

2個等式:33-32=233×222;

3個等式:43-42=334×332;

……

按照以上規(guī)律,解決下列問題:

1)寫出第4個等式:__________________;

2)寫出你猜想的第n個等式(用含n的等式表示),并證明.

【答案】1;(2)猜想出第個等式為,證明見解析.

【解析】

1)根據(jù)前三個等式歸納總結(jié)出規(guī)律即可得;

2)先歸納總結(jié)出一般規(guī)律,得出第n個等式,再利用因式分解的方法分別計算等式的兩邊即可得證.

1)由前三個等式可得:第4個等式為

故答案為:

2)猜想出第個等式為,證明如下:

等式的左邊

等式的右邊

則等式的左邊等式的右邊

所以等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的邊BC上有一動點E,連接AE、DE,以AEDE為邊作AEDF.在點E從點B移動到點C的過程中,AEDF的面積(

A.先變大后變小B.先變小后變大C.一直變大D.保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的頂點,,點軸的正半軸上,軸的正半軸上.連接,過點,垂足為點于點,則點的坐標(biāo)為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,為邊上的中線,點延長線上一點,連接于點,,

1)求證:;

2)在圖中找出與相等的線段,并證明;

3)若,求的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年疫情防控期間,我市一家服裝有限公司生產(chǎn)了一款服裝,為對比分析以前實體商店和現(xiàn)在網(wǎng)上商店兩種途徑的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查.其中實體商店的日銷售量(百件)與時間為整數(shù),單位:天)的部分對應(yīng)值如下表所示;網(wǎng)上商店的日銷售量(百件)與時間為整數(shù),單位:天)的關(guān)系如圖所示.

時間(天)

0

6

10

12

18

20

24

30

日銷售量(百件)

0

72

100

108

108

100

72

0

1)請你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)反映的變化規(guī)律,并求出的函數(shù)關(guān)系式及自變量的取值范圍;

2)求的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)在跟蹤調(diào)查的30天中,設(shè)實體商店和網(wǎng)上商店的日銷售總量為(百件),求的函數(shù)關(guān)系式;當(dāng)為何值時,日銷售量達(dá)到最大,并求出此時的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知OA是⊙O的半徑,OA=1,點POA上一動點,過P作弦BCOA,連接ABAC

1)如圖1,若POA中點,則AC=______,∠ACB=_______°;

2)如圖2,若移動點P,使AB、CO的延長線交于點D.記AOC的面積為S1,BOD的面積為S2AOD的面積為S3,且滿足,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)

(1)求反比例函數(shù)的解析式;

(2)連接OB(O是坐標(biāo)原點),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一條直線把矩形分割成兩個矩形,其中一個為黃金矩形 (寬與長的比為的矩形),則稱這條直線為該矩形的黃金線.例如圖所示的矩形中,直線,分別交、于點,且,顯然直線是矩形的黃金線.

1)如圖,在矩形中,,.請在圖中畫出矩形的其中一條黃金線,其中邊上,邊上,并標(biāo)注出線段的長度;

2)將正方形紙片按圖所示的方式折疊.

如圖所示,按上述方法折疊所得到的折痕是否為正方形的黃金線?請說明理由.

3)在矩形中,,,己知矩形的黃金線恰好將矩形分割成兩個黃金矩形,則______(只要求直接寫出其中三個答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為6,點A,B,C為⊙O上三點,BA平分∠OBC,過點AADBCBC延長線于點D.

(1)求證:AD是⊙O的切線;

(2)當(dāng)sinOBC=時,求BC的長;

(3)連結(jié)AC,當(dāng)ACOB時,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案