【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)DF⊥AC,若∠ADF:∠FDC=3:2,則∠BDF的度數(shù)是多少?

【答案】
(1)證明:∵AO=CO,BO=DO,

∴四邊形ABCD是平行四邊形,

∴∠ABC=∠ADC,

∵∠ABC+∠ADC=180°,

∴∠ABC=∠ADC=90°,

∴四邊形ABCD是矩形


(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,

∴∠FDC=36°,

∵DF⊥AC,

∴∠DCO=90°﹣36°=54°,

∵四邊形ABCD是矩形,

∴CO=OD,

∴∠ODC=∠DCO=54°,

∴∠BDF=∠ODC﹣∠FDC=18°.


【解析】(1)根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,求出∠ABC=90°,根據(jù)矩形的判定得出即可;(2)求出∠FDC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠DCO,根據(jù)矩形的性質(zhì)得出OD=OC,求出∠CDO,即可求出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標(biāo)是-2.

(1)求這條直線的解析式及點B的坐標(biāo);

(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;

(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1x2y2(﹣xy3

2)(-4x3+2x÷2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|a|=﹣a,則a是(
A.非負數(shù)
B.負數(shù)
C.正數(shù)
D.非正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】沿某一方向行駛的汽車經(jīng)過兩次拐彎后與開始行駛的方向正好相反,若汽車第一次是右拐40°,則第二次應(yīng)該是(

A.左拐40°B.左拐50°C.左拐140°D.右拐 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣2x+a與y軸交于點C (0,6),與x軸交于點B.
(1)求這條直線的解析式;
(2)直線AD與(1)中所求的直線相交于點D(﹣1,n),點A的坐標(biāo)為(﹣3,0). ①求n的值及直線AD的解析式;
②求△ABD的面積;
③點M是直線y=﹣2x+a上的一點(不與點B重合),且點M的橫坐標(biāo)為m,求△ABM的面積S與m之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個比﹣1小的數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( )
A.3a2+a=3a3
B.2a3(﹣a2)=2a5
C.4a6+2a2=2a3
D.(﹣3a)2﹣a2=8a2

查看答案和解析>>

同步練習(xí)冊答案