【題目】 如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)BO分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去.若點(diǎn)A,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為____________________

【答案】(6048,2).

【解析】

試題 ∵AO=,BO=2,

∴AB==,

∴OA+AB1+B1C2=6,

∴B2的橫坐標(biāo)為:6,且B2C2=2,

∴B4的橫坐標(biāo)為:2×6=12

點(diǎn)B2016的橫坐標(biāo)為:2016÷2×6=6048

點(diǎn)B2016的縱坐標(biāo)為:2

點(diǎn)B2016的坐標(biāo)為:(6048,2),

∴B2017的橫坐標(biāo)為6048++=6052

點(diǎn)B2017的坐標(biāo)為,6062,0),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地下車(chē)庫(kù)出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿;兩段的聯(lián)結(jié)點(diǎn).當(dāng)車(chē)輛經(jīng)過(guò)時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì),EF長(zhǎng)度遠(yuǎn)大于車(chē)輛寬度),其中ABBCEFBC,∠AEF143°,ABAE1.2米,該地下車(chē)庫(kù)出口的車(chē)輛限高標(biāo)志牌設(shè)置如圖4是否合理?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線(xiàn)C1y=﹣(x+m2+m2m0),拋物線(xiàn)C2y=(xn2+n2n0),稱(chēng)拋物線(xiàn)C1,C2互為派對(duì)拋物線(xiàn),例如拋物線(xiàn)C1y=﹣(x+12+1與拋物線(xiàn)C2y=(x2+2是派對(duì)拋物線(xiàn),已知派對(duì)拋物線(xiàn)C1,C2的頂點(diǎn)分別為AB,拋物線(xiàn)C1的對(duì)稱(chēng)軸交拋物線(xiàn)C2C,拋物線(xiàn)C2的對(duì)稱(chēng)軸交拋物線(xiàn)C1D

1)已知拋物線(xiàn)①y=﹣x22x,②y=(x32+3,③y=(x2+2,④yx2x+,則拋物線(xiàn)①②③④中互為派對(duì)拋物線(xiàn)的是   (請(qǐng)?jiān)跈M線(xiàn)上填寫(xiě)拋物線(xiàn)的數(shù)字序號(hào));

2)如圖1,當(dāng)m1,n2時(shí),證明ACBD;

3)如圖2,連接AB,CD交于點(diǎn)F,延長(zhǎng)BAx軸的負(fù)半軸于點(diǎn)E,記BDx軸于G,CDx軸于點(diǎn)H,∠BEO=∠BDC

求證:四邊形ACBD是菱形;

若已知拋物線(xiàn)C2y=(x22+4,請(qǐng)求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tanPBC=,點(diǎn)Q是在射線(xiàn)BP上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)QAB的平行線(xiàn)交射線(xiàn)AD于點(diǎn)M,點(diǎn)R在射線(xiàn)AD上,使RQ始終與直線(xiàn)BP垂直.

1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);

2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說(shuō)明你的理由;若沒(méi)有變化,請(qǐng)求出它的比值;

3)如圖3,若點(diǎn)Q在線(xiàn)段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,, ,動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)的速度沿折線(xiàn)運(yùn)動(dòng)到點(diǎn),點(diǎn)的速度沿運(yùn)動(dòng)到點(diǎn),設(shè),同時(shí)出發(fā)時(shí),的面積為,則的函數(shù)圖象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)軸交于點(diǎn),,與直線(xiàn)交于點(diǎn),直線(xiàn)軸交于點(diǎn)

(1)求該拋物線(xiàn)的解析式.

(2)點(diǎn)是拋物線(xiàn)上第四象限上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).

(3)將拋物線(xiàn)的對(duì)稱(chēng)軸向左平移3個(gè)長(zhǎng)度單位得到直線(xiàn),點(diǎn)是直線(xiàn)上一點(diǎn),連接,,若直線(xiàn)上存在使最大的點(diǎn),請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,按B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:(說(shuō)明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分~74分;D級(jí):60分以下)

(1)求出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;

(2)求出扇形統(tǒng)計(jì)圖(圖2)中C級(jí)所在的扇形圓心角的度數(shù);

(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生的課余生活,學(xué)校準(zhǔn)備購(gòu)買(mǎi)部分體育器材,以滿(mǎn)足學(xué)生們的需求.學(xué)校對(duì)“我最喜愛(ài)的體育運(yùn)動(dòng)”進(jìn)行了抽樣調(diào)查(每個(gè)學(xué)生只選一次),根據(jù)調(diào)查結(jié)果繪成如圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問(wèn)題.

1)求m、n的值;

2)若該校有2000名學(xué)生,請(qǐng)你根據(jù)樣本數(shù)據(jù),估算該校喜歡踢足球的學(xué)生人數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案