(2010•皇姑區(qū)一模)如圖,AB是⊙O的切線,A為切點(diǎn),AC是⊙O的弦,過O作OH⊥AC于點(diǎn)H,若OH=2,AB=12,BO=13.求:
(1)⊙O的半徑;
(2)sin∠OAC的值;
(3)弦AC的長(結(jié)果保留含有根號(hào)的式子).
分析:(1)根據(jù)切線的性質(zhì)由AB是⊙O的切線得到∠OAB=90°,然后根據(jù)勾股定理可計(jì)算出OA=5;
(2)在Rt△OAH中利用正弦的定義求解;
(3)根據(jù)垂徑定理由OH⊥AC得AH=HC,然后根據(jù)勾股定理計(jì)算出AH,則由AC=2AH求解.
解答:解:(1)∵AB是⊙O的切線,
∴OA⊥AB,
∴∠OAB=90°,
∵AB=12,BO=13,
∴OA=
OB2-AB2
=5,
即⊙O的半徑為5;

(2)∵OH⊥AC,
∴∠OHA=90°,
而OA=5,OH=2,
∴sin∠OAC=
OH
OA
=
2
5
;

(3)∵OH⊥AC,
∴AH=HC,
在Rt△OAH中,AH=
OA2-OH2
=
21
,
∴AC=2AH=2
21
點(diǎn)評(píng):本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.也考查了垂徑定理、勾股定理和銳角三角函數(shù)的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)正比例函數(shù)y=2x的圖象沿x軸向右平移2個(gè)單位,所得圖象的函數(shù)解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)下列事件中,必然事件是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)下列結(jié)論正確的個(gè)數(shù)是(  )
(1)一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形是六邊形;
(2)如果一個(gè)三角形的三邊長分別為6、8、10,則最長邊上的中線長為5;
(3)若△ABC∽△DEF,相似比為1:4,則S△ABC:S△DEF=1:4;
(4)若等腰三角形一個(gè)角為80°,則底角為80°或50°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)已知∠1與∠2互補(bǔ),若∠1=43°26′,則∠2=
136°34′
136°34′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)如圖所示,ABCD為正方形.
(1)如圖1,點(diǎn)P為△ABC的內(nèi)心,問:DP與DA有何數(shù)量關(guān)系?證明你的結(jié)論.
(2)如圖2,若點(diǎn)E在CB邊上(不與點(diǎn)C、B重合),點(diǎn)F在BA的延長線上,AF=CE,點(diǎn)P為△FBE的內(nèi)心,則DP與DF有何數(shù)量關(guān)系?證明你的結(jié)論.
(3)如圖3,若點(diǎn)E在CB延長線上(不與點(diǎn)B重合),點(diǎn)F在BA的延長線上,AF=CE,點(diǎn)P是△FEB中與∠FEB、∠FBE相鄰的兩個(gè)外角平分線的交點(diǎn),完成圖3,判斷DP與DF之間的數(shù)量關(guān)系(直接寫出結(jié)論,不證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案