分析 (1)設(shè)運(yùn)動時(shí)間為x秒,則AP=x,BQ=2x,根據(jù)勾股定理可得PQ=$\sqrt{P{B}^{2}+B{Q}^{2}}$=$\sqrt{(6-x)^{2}+4{x}^{2}}$=$\sqrt{5(x-\frac{6}{5})^{2}+\frac{144}{5}}$,即可得答案;
(2)根據(jù)S△PBQ=$\frac{1}{2}$×PB×BQ=$\frac{1}{2}$(6-x)•2x=-x2+6x=-(x-3)2+9可得答案.
解答 解:(1)設(shè)運(yùn)動時(shí)間為x秒,
則AP=x,BQ=2x,
∵AB=6,
∴PB=6-x,
則PQ=$\sqrt{P{B}^{2}+B{Q}^{2}}$=$\sqrt{(6-x)^{2}+4{x}^{2}}$=$\sqrt{5(x-\frac{6}{5})^{2}+\frac{144}{5}}$,
∴當(dāng)x=$\frac{6}{5}$時(shí),PQ最短,
答:經(jīng)過1.2秒,P、Q的距離最短;
(2)∵S△PBQ=$\frac{1}{2}$×PB×BQ
=$\frac{1}{2}$(6-x)•2x
=-x2+6x
=-(x-3)2+9,
∴當(dāng)x=3時(shí),S△PBQ取得最大值9,
答:經(jīng)過3秒,△PBQ的面積最大,最大面積是9cm2.
點(diǎn)評 本題主要考查二次函數(shù)的應(yīng)用能力,熟練掌握勾股定理和三角形的面積公式列出函數(shù)解析式是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com