【題目】如圖,是的直徑,點(diǎn)在的延長線上,、是上的兩點(diǎn),,,延長交的延長線于點(diǎn)
(1)求證:是的切線;
(2)求證:
(3)若,,求弦的長.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)連接OC,可證得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即結(jié)論得證;
(2)證明△ABC≌△AFC可得CB=CF,又CB=CE,則CE=CF;
(3)證明△CBD∽△DCA,可求出DA的長,求出AB長,設(shè)BC=a,AC=a,則由勾股定理可得AC的長.
(1)連,
∵,
∴,
又,,
∴,
∵是的直徑,
∴,
∴,
,
∴,且過半徑的外端點(diǎn),
∴是的切線;
(2)在和中,,
,為公共邊,
∴,
∴,又,
∴;
(3)∵∠BCD=∠CAD,∠ADC=∠CDB,
∴△CBD∽△DCA,
∴,
∴,
∴DA=2,
∴AB=AD-BD=2-1=1,
設(shè)BC=a,AC=a,由勾股定理可得:a2+(a)2=12,
解得:a=,
∴AC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過矩形的對角線的中點(diǎn)作,交邊于點(diǎn),交邊于點(diǎn),分別連接、.若,,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個(gè)等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.
請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會(huì)決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的⊙分別交于點(diǎn),點(diǎn)在的延長線上,且.
(1)求證:是⊙的切線;
(2)若⊙的直徑為3,,求和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,與相交于點(diǎn),,將沿折疊,點(diǎn)的對應(yīng)點(diǎn)為,連接交于點(diǎn),且,在邊上有一點(diǎn),使得的值最小,此時(shí)( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒梅中學(xué)為了豐富學(xué)生的課余生活,計(jì)劃購買圍棋和中國象棋供棋類興趣小組活動(dòng)使用,若購買3副圍棋和5副中國象棋需用98元;若購買8副圍棋和3副中國象棋需用158元;(1)求每副圍棋和每副中國象棋各多少元;(2)寒梅中學(xué)決定購買圍棋和中國象棋共40副,總費(fèi)用不超過550元,那么寒梅中學(xué)最多可以購買多少副圍棋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與的AC邊相切于點(diǎn)C,與AB、BC邊分別交于點(diǎn)D、E,,CE是的直徑.
(1)求證:AB是的切線;
(2)若求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若是完全平方式,則;
②若三點(diǎn)在同一直線上,則;
③等腰三角形一邊上的中線所在的直線是它的對稱軸;
④一個(gè)多邊形的內(nèi)角和是它的外角和的倍,則這個(gè)多邊形是六邊形.
其中真命題個(gè)數(shù)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠用天時(shí)間生產(chǎn)一款新型節(jié)能產(chǎn)品,每天生產(chǎn)的該產(chǎn)品被某網(wǎng)店以每件元的價(jià)格全部訂購,在生產(chǎn)過程中,由于技術(shù)的不斷更新,該產(chǎn)品第天的生產(chǎn)成本(元/件)與(天)之間的關(guān)系如圖所示,第天該產(chǎn)品的生產(chǎn)量(件)與(天)滿足關(guān)系式
第天,該廠生產(chǎn)該產(chǎn)品的利潤是 元;
設(shè)第天該廠生產(chǎn)該產(chǎn)品的利潤為元.
①求與之間的函數(shù)關(guān)系式,并指出第幾天的利潤最大,最大利潤是多少?
②在生產(chǎn)該產(chǎn)品的過程中,當(dāng)天利潤不低于元的共有多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com