【題目】如圖,矩形ABCD中,AD=4,AB=2.點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC邊上的任意一點(diǎn)(不與B、C重合),△EBF沿EF翻折,點(diǎn)B落在B'處,當(dāng)DB'的長度最小時(shí),BF的長度為________.
【答案】
【解析】
根據(jù)題意可知當(dāng)FB'⊥DE時(shí),DB'的長度最小,則根據(jù)勾股定理求出DE=,設(shè)BF=x,根據(jù)折疊的性質(zhì)可得B’E=1, B’F=x,則DB'=-1,FC=4-x,再根據(jù)DF是兩個(gè)直角三角形的斜邊,可根據(jù)勾股定理列出方程即可求解.
如圖,當(dāng)FB'⊥DE時(shí),DB'的長度最小,
∵點(diǎn)E是AB的中點(diǎn),
∴AE=BE==1
∴DE=
設(shè)BF=x,
∵折疊,∴B’E=1, B’F=x,
故DB'=-1,FC=4-x,
在Rt△DCF和Rt△B’DF中,
DF2=
即
解得x=
即BF=
故填:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點(diǎn)的橫坐標(biāo)表示科技館從8:30開門后經(jīng)過的時(shí)間(分鐘),縱坐標(biāo)表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為,10:00之后來的游客較少可忽略不計(jì).
(1)請寫出圖中曲線對應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時(shí),館外等待的游客可全部進(jìn)入.請問館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),拋物線上另有一點(diǎn) C在x軸下方,且使ΔOCA∽ΔOBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點(diǎn)D,點(diǎn)C是BD的中點(diǎn)時(shí),求直線BD和拋物線的解析式,
(3)在(2)的條件下,點(diǎn)P是直線BC下方拋物線上的一點(diǎn),過P作于點(diǎn)E,作PF//AB交BD于點(diǎn)F,是否存在一點(diǎn)P,使得最大,若存在,請求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本);并求出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若干名工人某天生產(chǎn)同一種玩具,生產(chǎn)的玩具數(shù)整理成條形圖(如圖所示).則他們生產(chǎn)的玩具數(shù)的平均數(shù)、中位數(shù)、眾數(shù)分別為( )
A.5,5,4 B.5,5,5
C.5,4,5 D.5,4,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)P是對角線BD的中點(diǎn),點(diǎn)E、F分別是AB、CD的中點(diǎn),AD=BC,且∠A+∠ABC=90°,則∠PEF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖等邊的邊長為,點(diǎn),點(diǎn)同時(shí)從點(diǎn)出發(fā),點(diǎn)沿以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)沿以的速度也向點(diǎn)運(yùn)動(dòng),直到到達(dá)點(diǎn)時(shí)兩點(diǎn)都停止運(yùn)動(dòng),若的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為,則下列最能反映與之間函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,△A′BC與△ABC關(guān)于BC所在直線對稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)△A′EF為直角三角形時(shí),AB的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com