某玩具廠計劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出.已知生產(chǎn)x只玩具熊貓的成本為R(元),售價每只為P(元),且R、P與x的關(guān)系式分別為R=500+30x,P=170-2x.
(1)當(dāng)日產(chǎn)量為多少時,每日獲得的利潤為1750元?
(2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?最大利潤是多少?
(1)∵生產(chǎn)x只玩具熊貓的成本為R(元),售價每只為P(元),且R,P與x的關(guān)系式分別為R=500+30x,P=170-2x,
∴(170-2x)x-(500+30x)=1750,
解得 x1=25,x2=45(大于每日最高產(chǎn)量為40只,舍去).

(2)設(shè)每天所獲利潤為W,
由題意得,W=(170-2x)x-(500+30x)
=-2x2+140x-500
=-2(x2-70x)-500
=-2(x2-70x+352-352)-500
=-2(x2-70x+352)+2×352-500
=-2(x-35)2+1950.
當(dāng)x=35時,W有最大值1950元.
答:當(dāng)日產(chǎn)量為25只時,每日獲得利潤為1750元;要想獲得最大利潤,每天必須生產(chǎn)35個工藝品,最大利潤為1950.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點A在拋物線y=
1
4
x2上,過點A作與x軸平行的直線交拋物線于點B,延長AO,BO分別與拋物線y=-
1
8
x2相交于點C,D,連接AD,BC,設(shè)點A的橫坐標為m,且m>0.
(1)當(dāng)m=1時,求點A,B,D的坐標;
(2)當(dāng)m為何值時,四邊形ABCD的兩條對角線互相垂直;
(3)猜想線段AB與CD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=kx+n的圖象與x軸和y軸分別交于點A(6,0)和B(0,2
3
),線段AB的垂直平分線交x軸于點C,交AB于點D.
(1)試確定這個一次函數(shù)關(guān)系式;
(2)求過A、B、C三點的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=ax2+bx+c經(jīng)過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標軸分別交于A、D兩點,與拋物線交于B(1,m)、C(2,2)兩點.
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動點P(x,y),設(shè)∠PON=α,求當(dāng)△PON的面積最大時tanα的值;
(3)若動點P保持(2)中的運動路線,問是否存在點P,使得△POA的面積等于△PON面積的
8
15
?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標系中,Rt△OAB的OA邊在x軸上,OB邊在y軸上,且OA=2,AB=
5
,將△OAB繞點O逆時針方向旋轉(zhuǎn)90°后得△OCD,已知點E的坐標是(2、2)
(1)求經(jīng)過D、C、E點的拋物線的解析式;
(2)點M(x、y)是拋物線上任意點,當(dāng)0<x<2時,過M作x軸的垂線交直線AC于N,試探究線段MN是否存在最大值,若存在,求出最大值是多少?并求出此時M點的坐標;
(3)P為直線AC上一動點,連接OP,作PF⊥OP交直線AE于F點,是否存在點P,使△PAF是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(如005•寧波)已知拋物線y=-x-如kx+rk(k>0)交x軸于A、B兩點,交y軸于點C,以AB為直徑的⊙E交y軸于點y、著(如圖),且y著=0,G是劣弧Ay上的動點(不與點A、y重合),直線CG交x軸于點P.
(1)求拋物線的解析式;
(如)當(dāng)直線CG是⊙E的切線時,求ca左∠PC右的值;
(r)當(dāng)直線CG是⊙E的割線時,作GM⊥AB,垂足為y,交P著于點M,交⊙E于另一點左,設(shè)M左=c,GM=u,求u關(guān)于c的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC是邊長為4的等邊三角形,AB在x軸上,點C在第一象限,AC交y軸于點D,點A的坐標為(-1,0).
(1)求B、C、D三點的坐標;
(2)拋物線y=ax2+bx+c經(jīng)過B、C、D三點,求它的解析式;
(3)過點D作DEAB交經(jīng)過B、C、D三點的拋物線于點E,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,五邊形ABCDE為一塊土地的示意圖.四邊形AFDE為矩形,AE=130米,ED=100米,BC截∠F交AF、FD分別于點B、C,且BF=FC=10米.
(1)現(xiàn)要在此土地上劃出一塊矩形土地NPME作為安置區(qū),且點P在線段BC上,若設(shè)PM的長為x米,矩形NPME的面積為y平方米,求y與x的函數(shù)關(guān)系式,并求當(dāng)x為何值時,安置區(qū)的面積y最大,最大面積為多少?
(2)因三峽庫區(qū)移民的需要,現(xiàn)要在此最大面積的安置區(qū)內(nèi)安置30戶移民農(nóng)戶,每戶建房占地100平方米,政府給予每戶4萬元補助,安置區(qū)內(nèi)除建房外的其余部分每平方米政府投入100元作為基礎(chǔ)建設(shè)費,在五邊形ABCDE這塊土地上,除安置區(qū)外的部分每平方米政府投入200元作為設(shè)施施工費.為減輕政府的財政壓力,決定鼓勵一批非安置戶到此安置區(qū)內(nèi)建房,每戶建房占地120平方米,但每戶非安置戶應(yīng)向政府交納土地使用費3萬元.為保護環(huán)境,建房總面積不得超過安置區(qū)面積的50%.若除非安置戶交納的土地使用費外,政府另外投入資金150萬元,請問能否將這30戶移民農(nóng)戶全部安置?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當(dāng)P點到達D點時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)當(dāng)P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)在(1)中當(dāng)t為何值時,△OPQ的面積最大,并求此時P點的坐標;
(4)如果點P、Q保持原速度不變,當(dāng)點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案