如圖,已知拋物線與坐標(biāo)軸分別交于A(-2,0),B(2,0),C(0,-1)三點(diǎn),過坐標(biāo)原點(diǎn)O的直線y=kx與拋物線交于M、N兩點(diǎn).分別過點(diǎn)C、D(0,-2)作平行于x軸的直線l1、l2
(1)求拋物線對(duì)應(yīng)二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線l1相切;
(3)求線段MN的長(用k表示),并證明M、N兩點(diǎn)到直線l2的距離之和等于線
段MN的長.

【答案】分析:(1)設(shè)函數(shù)解析式為y=ax2+bx+c,然后利用待定系數(shù)法求解即可;
(2)設(shè)M(x1,y1),N(x2,y2),然后代入拋物線方程,用含y2的式子表示出ON,設(shè)ON的中點(diǎn)E,分別過點(diǎn)N、E向直線l、作垂線,垂足為P、F,利用梯形的中位線定理可得出EF,與所求ON的值進(jìn)行比較即可得出結(jié)論;
(3)過點(diǎn)M作MH丄NP交NP于點(diǎn)H,在RT△MNH中表示出MN2,結(jié)合直線方程將MN2化簡,求出MN,然后延長NP交l2于點(diǎn)Q,過點(diǎn)M作MS丄l2交l2于點(diǎn)S,則MS+NQ=y1+2+y2+2=-1+-1+4=)+2,利用根與系數(shù)的關(guān)系,求出,并代入,從而可得出結(jié)論.
解答:解:(1)設(shè)拋物線對(duì)應(yīng)二次函數(shù)的解析式為y=ax2+bx+c,
由函數(shù)經(jīng)過A(-2,0),B(2,0),C(0,-1)三點(diǎn)可得:,
解得
所以y=x2-1.
(2)設(shè)M(x1,y1),N(x2,y2),因?yàn)辄c(diǎn)M、N在拋物線上,

所以 y1=-1,y2=-1,所以=4(y2+1);
又ON2=x22+y22=4(y2+1)+y22=(y2+2)2,所以O(shè)N=|2+y2|,又因?yàn)閥2為正,所以O(shè)N=2+y2,
設(shè)ON的中點(diǎn)E,分別過點(diǎn)N、E向直線l、作垂線,垂足為P、F,
則EF==1+,
所以O(shè)N=2EF
即ON的中點(diǎn)到直線l1的距離等于ON長度的一半,
所以以O(shè)N為直徑的圓與l1相切.
(3)過點(diǎn)M作MH丄NP交NP于點(diǎn)H,則MN2=MH2+NH2=(x2-x12+(y2-y12,
又y1=kx1,y2=kx2,所以(y2-y12=k2(x2-x12
所以MN2=(1+k2)(x2-x12;
又因?yàn)辄c(diǎn)M,N在y=kx的圖象上又在拋物線上,
所以kx=x2-1,即x2-4kx-4=0,
所以x=
所以(x2-x12=16(1+k2
所以MN2=16(1+k22,MN=4(1+k2),
延長NP交l2于點(diǎn)Q,過點(diǎn)M作MS丄l2交l2于點(diǎn)S,
則MS+NQ=y1+2+y2+2=-1+-1+4=)+2
=(x1+x22-2x1x2=16k2+8,
所以MS+NQ=4k2+2+2=4(1+k2)=MN,
即M、N兩點(diǎn)到l2距離之和等于線段MN的長.
點(diǎn)評(píng):此題屬于二次函數(shù)的綜合題目,涉及了待定系數(shù)法求函數(shù)解析式、根與系數(shù)的關(guān)系,梯形的中位線定理,綜合性較強(qiáng),關(guān)鍵是要求同學(xué)們能將所學(xué)的知識(shí)融會(huì)貫通.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx(a>0)與反比例函數(shù)的圖象相交于點(diǎn)A,B.已知點(diǎn)A的坐

為(1,4),點(diǎn)B(t,q)在第三象限內(nèi),且△AOB的面積為3(O為坐標(biāo)原點(diǎn)).

(1)求反比例函數(shù)的解析式;

(2)用含t的代數(shù)式表示直線AB的解析式;

(3)求拋物線的解析式;

(4)過拋物線上點(diǎn)A作直線AC∥x軸,交拋物線于另一點(diǎn)C,把△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,請(qǐng)?jiān)趫D②中畫出旋轉(zhuǎn)后的三角形,并直接寫出所有滿足△EOC∽△AOB的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東東營卷)數(shù)學(xué)(解析版) 題型:解答題

已知拋物線經(jīng)過A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求b的值,求出點(diǎn)P、點(diǎn)B的坐標(biāo);

(2)如圖,在直線 上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐

標(biāo);若不存在,請(qǐng)說明理由;

(3)在x軸下方的拋物線上是否存在點(diǎn)M,使△AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案