【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).

(1)①將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;
②若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

【答案】
(1)解:①△ABC旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C,△ABC平移后對(duì)應(yīng)的△A2B2C2如圖所示

②如圖所示:旋轉(zhuǎn)中心的坐標(biāo)為:( ,﹣1)


(2)解:∵PO∥AC,

= ,

=

∴OP=2,

∴點(diǎn)P的坐標(biāo)為(﹣2,0)


【解析】(1)延長AC到A1 , 使得AC=A1C,延長BC到B1 , 使得BC=B1C,利用點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),得出圖象平移單位,即可得出△A2B2C2;根據(jù)△△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2進(jìn)而得出,旋轉(zhuǎn)中心即可;(2)根據(jù)B點(diǎn)關(guān)于x軸對(duì)稱點(diǎn)為A2 , 連接AA2 , 交x軸于點(diǎn)P,再利用相似三角形的性質(zhì)求出P點(diǎn)坐標(biāo)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解軸對(duì)稱-最短路線問題的相關(guān)知識(shí),掌握已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)向右平移個(gè)單位到點(diǎn),再將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)到點(diǎn).直接寫出點(diǎn),的坐標(biāo);23.

在平面直角坐標(biāo)系中,將第二象限內(nèi)的點(diǎn)向右平移個(gè)單位到第一象限點(diǎn),再將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)到點(diǎn),直接寫出點(diǎn),的坐標(biāo);

在平面直角坐標(biāo)系中.將點(diǎn)沿水平方向平移個(gè)單位到點(diǎn),再將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)到點(diǎn),直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)CCHAEG,交ABH.

(1)直接寫出∠CFE的度數(shù)________;

(2)求證:CF=BH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC內(nèi)一點(diǎn),CD平分∠ACB,BDCD,A=ABD,若AC=5,BC=3,則BD的長為(  )

A. 1 B. 1.5 C. 2.5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
①(2x+1)2=3(2x+1)
②4(x﹣1)2﹣9(3﹣2x)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點(diǎn)P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,點(diǎn)P在AOB的平分線上。 正確的是 填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C

處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形中,,,且

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了考察冰川的融化狀況,一支科考隊(duì)在某冰川上設(shè)定一個(gè)以大本營O為圓心,半徑為4km的圓形考察區(qū)域,線段P1P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時(shí),邊界線沿著與其垂直的方向朝考察區(qū)域平行移動(dòng),若經(jīng)過n年,冰川的邊界線P1P2移動(dòng)的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是s= n2 n+ .以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別為(﹣4,9)、(﹣13、﹣3).
(1)求線段P1P2所在直線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求冰川邊界線移動(dòng)到考察區(qū)域所需的最短時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案