如圖在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)請(qǐng)你畫出將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1
(2)線段OA1的長(zhǎng)度是______,∠AOB1的度數(shù)是______;
(3)連接AA1,求證:四邊形OAA1B1是平行四邊形.
(1)△OA1B1如圖所示.

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)知,OA1=OA=6.
∵將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1,
∴∠BOB1=90°.
∵在Rt△OAB中,∠OAB=90°,OA=AB=6,
∴∠BOA=∠OBA=45°,
∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度數(shù)是135°.
故答案是:6,135°;

(3)證明:根據(jù)旋轉(zhuǎn)的性質(zhì)知,△OA1B1≌△OAB,
則∠OA1B1=∠OAB=90°,A1B1=AB,
∵將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1,
∴∠A1OA=90°,
∴∠OA1B1=∠A1OA,
∴A1B1OA.
又∵OA=AB,
∴A1B1=OA,
∴四邊形OAA1B1是平行四邊形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在正方形網(wǎng)格上有一個(gè)△ABC.
(1)畫出△ABC關(guān)于直線MNn對(duì)稱圖形△A1B1C1;
(它)畫出△ABC關(guān)于點(diǎn)四n對(duì)稱圖形△ABC;
(3)若網(wǎng)格上n最小正方形邊長(zhǎng)為1,求△ABCn面積;
(w)△ABC能否由△A1B1C1平移s到?能否由△A1B1C1旋轉(zhuǎn)s到?這兩個(gè)三角形(指△A1B1C1與△ABC)存在什么樣n圖形變換關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形繞某點(diǎn)旋轉(zhuǎn)后,不能與原來(lái)重合的是(旋轉(zhuǎn)度數(shù)不超過180°)( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的直徑AB長(zhǎng)為6,弦AC長(zhǎng)為2,∠ACB的平分線交⊙O于點(diǎn)D.
(1)求BD的長(zhǎng);
(2)將△ADC繞D點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,請(qǐng)補(bǔ)充旋轉(zhuǎn)后圖形,并計(jì)算CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC的頂點(diǎn)都在格點(diǎn)上,在方格紙中建立平面直角坐標(biāo)系如圖所示.
(1)畫出△ABC關(guān)于x軸的對(duì)稱圖形△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo).
(2)把(1)中的△A1B1C1繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)180°得到△A2B2C2,在圖中畫出△A2B2C2,并回答△A2B2C2與△ABC對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有何關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別為(-4,4)、(-6,2).請(qǐng)按要求完成下列各題:

(1)把△AOB向上平移4個(gè)單位后得到對(duì)應(yīng)的△A1O1B1,則點(diǎn)A1、B1的坐標(biāo)分別是______;
(2)將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2OB2,在旋轉(zhuǎn)過程中線段AO所掃過的面積為______;
(3)點(diǎn)P1,P2,P3,P4,P5是△AOB邊上的5個(gè)格點(diǎn),畫一個(gè)三角形,使它的三個(gè)頂點(diǎn)為P1,P2,P3,P4,P5中的3個(gè)格點(diǎn)并且與△AOB相似.(要求:在圖中連接相應(yīng)線段,不用說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=90°,AB=BC,BD為斜邊AC上的中線,將△ABD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)α(0°<α<180°),得到△EFD,點(diǎn)A的對(duì)應(yīng)頂點(diǎn)是E,點(diǎn)B的對(duì)應(yīng)頂點(diǎn)是F,連接BE、CF.試判斷BE與CF的長(zhǎng)度是否相等,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知正方形ABCD的邊長(zhǎng)為
3
,點(diǎn)E在DC上,且∠DAE=30°,若將△ADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,點(diǎn)D至D′處,點(diǎn)E至E′處,那么△AD′E′與四邊形ABCE重疊部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在邊長(zhǎng)為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

同步練習(xí)冊(cè)答案