【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長(zhǎng)度為

【答案】2
【解析】解:連接OE和OC,且OC與EF的交點(diǎn)為M.
∵∠EDC=30°,
∴∠COE=60°.
∵AB與⊙O相切,
∴OC⊥AB,
又∵EF∥AB,
∴OC⊥EF,即△EOM為直角三角形.
在Rt△EOM中,EM=sin60°×OE= ×2=
∵EF=2EM,
∴EF=2
故答案為:2
輔助線,連接OC與OE.根據(jù)一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,可知∠EOC的度數(shù);再根據(jù)切線的性質(zhì)定理,圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由三角函數(shù)和垂徑定理可將EF的長(zhǎng)求出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:(﹣1)2011+ ﹣2sin60°+|﹣1|.
(2)解不等式組 ,并把它的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C,且A(4,0),C(0,﹣3),對(duì)稱軸是直線x=1.

(1)求二次函數(shù)的解析式;
(2)若M是第四象限拋物線上一動(dòng)點(diǎn),且橫坐標(biāo)為m,設(shè)四邊形OCMA的面積為s.請(qǐng)寫(xiě)出s與m之間的函數(shù)關(guān)系式,并求出當(dāng)m為何值時(shí),四邊形OCMA的面積最大;
(3)設(shè)點(diǎn)B是x軸上的點(diǎn),P是拋物線上的點(diǎn),是否存在點(diǎn)P,使得以A,B、C,P四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:(﹣2)2 (1+tan45°)
(2)先化簡(jiǎn),再求值: ,其中a= ﹣2,b= +2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年中考,阜陽(yáng)市某區(qū)計(jì)劃在4月中旬的某個(gè)周二至周四這3天進(jìn)行理化加試.王老師和朱老師都將被邀請(qǐng)當(dāng)監(jiān)考老師,王老師隨機(jī)選擇2天,朱老師隨機(jī)選擇1天當(dāng)監(jiān)考老師.
(1)求王老師選擇周二、周三這兩天的概率是多少?
(2)求王老師和朱老師兩人同一天監(jiān)考理化加試的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B(3,3)在雙曲線y= (x>0)上,點(diǎn)D在雙曲線y=﹣ (x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,且點(diǎn)A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)點(diǎn)B.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動(dòng),點(diǎn)P、Q運(yùn)動(dòng)的速度均為每秒1個(gè)單位,運(yùn)動(dòng)的時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.

(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),四邊形BDGQ的面積最大?最大值為多少?
(3)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)過(guò)程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,E,H為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫(xiě)出此時(shí)菱形的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中點(diǎn),P是BC邊上的一動(dòng)點(diǎn)(P與B,C不重合),連接PM并延長(zhǎng)交AD的延長(zhǎng)線于Q.
(1)試說(shuō)明△PCM≌△QDM.
(2)當(dāng)點(diǎn)P在點(diǎn)B、C之間運(yùn)動(dòng)到什么位置時(shí),四邊形ABPQ是平行四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣ 1﹣| ﹣1|+2sin60°+(π﹣4)0

查看答案和解析>>

同步練習(xí)冊(cè)答案