【題目】如圖1,在四邊形ABCD內接于⊙O,AB=AC,BD為⊙O的直徑,AE⊥BD,垂足為點E,交BC于點F.
(1)求證:FA=FB;
(2)如圖2,分別延長AD,BC交于點G,點H為FG的中點,連接DH,若tan∠ACB=,求證:DH為⊙O的切線;
(3)在(2)的條件下,若DA=3,求AE的長.
【答案】(1)見解析;(2)見解析;(3)AE=2.
【解析】
(1)易得∠BAD=90°,∠AED=90°,根據(jù)余角的性質得∠BAE=∠ADE,結合等腰三角形的性質和圓周角定理,即可得到結論;
(2)由正切函數(shù)的定義得AB=AD, AG=AB,從而得AG=2AD,即點D為AG的中點,進而得DH∥AF,結合∠AED=90°,即可得到結論;
(3)根據(jù)正切三角函數(shù)的定義和勾股定理得AB=6,BD=3,結合三角形的面積公式,即可得到答案.
(1)∵BD為⊙O的直徑,
∴∠BAD=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BD,
∴∠AED=90°,
∴∠DAE+∠ADE=90°,
∴∠BAE=∠ADE,
∵AB=AC,
∴∠ABC=∠ACB,
又∵∠ACB=∠ADE,
∴∠ABC=∠ADE=∠BAE,
∴FA=FB;
(2)由(1)知,∠ABC=∠ACB=∠ADB,
∵tan∠ACB=,
∴tan∠ABC=tan∠ADB=,
又∵∠BAD=90°,
∴在Rt△BAD中,AB=AD,在Rt△BAG中,AG=AB,
∴AG=(AD)=2AD,
∴點D為AG的中點,
又∵點H為FG的中點,
∴DH∥AF,
由(1)知,∠AED=90°,
∴∠HDE=∠AED=90°,
∴DH⊥OD,
∴DH為⊙O的切線;
(3)∵AD=3,
∴AB=AD=6,
∴在Rt△ABD中,BD= =3,
∵S△ABD=ABAD=BDAE,
∴6×3=3×AE,
∴AE=2.
科目:初中數(shù)學 來源: 題型:
【題目】我國傳統(tǒng)的計重工具﹣﹣秤的應用,方便了人們的生活.如圖1,可以用秤砣到秤紐的水平距離,來得出秤鉤上所掛物體的重量.稱重時,若秤桿上秤砣到秤紐的水平距離為x(厘米)時,秤鉤所掛物重為y(斤),則y是x的一次函數(shù).下表中為若干次稱重時所記錄的一些數(shù)據(jù).
x(厘米) | 1 | 2 | 4 | 7 | 11 | 12 |
y(斤) | 0.75 | 1.00 | 1.50 | 2.75 | 3.25 | 3.50 |
(1)在上表x,y的數(shù)據(jù)中,發(fā)現(xiàn)有一對數(shù)據(jù)記錄錯誤.在圖2中,通過描點的方法,觀察判斷哪一對是錯誤的?
(2)根據(jù)(1)的發(fā)現(xiàn),問秤桿上秤砣到秤紐的水平距離為16厘米時,秤鉤所掛物重是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)估計該單位750名職工共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,是斜邊上的中線,將沿直線翻折至的位置,連接,若∥.計算的長度等于___________.
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/22/2490290299265024/2493010512117760/STEM/0e34dfb35fee4b78a4f71960876ffe14.png]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB=BC,延長AC到點D,使得CD=CB,連接BD交⊙O于點E,過點E做BC的平行線交CD于點F.
(1)求證:AE=DE.
(2)求證:EF為⊙O的切線;
(3)若AB=5,BE=3,求弦AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個矩形紙片放置在平面直角坐標系中,點,點,點E,F分別在邊,上.沿著折疊該紙片,使得點A落在邊上,對應點為,如圖①.再沿折疊,這時點E恰好與點C重合,如圖②.
(Ⅰ)求點C的坐標;
(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點O與點F重合,折痕與相交于點P,展開矩形紙片,如圖③.
①求的大小;
②點M,N分別為,上的動點,當取得最小值時,求點N的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某次臺風來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA=37°,AD=5米,求這棵大樹AB的高度.(結果保留根號)(參考數(shù)據(jù):sin37≈0.6,cos37=0.8,tan37≈0.75)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com