【題目】E、F,G、H依次為四邊形ABCD各邊的中點(diǎn),若四邊形ABCD滿足______條件,那么四邊形EFGH是矩形.(只需填一個(gè)你認(rèn)為合適的條件)
【答案】AC⊥BD.
【解析】
根據(jù)三角形的中位線定理,可以證明所得四邊形的兩組對(duì)邊分別和兩條對(duì)角線平行,所得四邊形的兩組對(duì)邊分別是兩條對(duì)角線的一半,再根據(jù)平行四邊形的判定就可證明該四邊形是一個(gè)平行四邊形;所得四邊形要成為矩形,則需有一個(gè)角是直角,故對(duì)角線應(yīng)滿足互相垂直.
如圖,連接AC、BD.
∵E、F. G、H分別是AB、BC、CD、DA邊上的中點(diǎn),
∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD,
∴EF∥HG,EF=GH,FG∥EH,FG=EH.
∴四邊形EFGH是平行四邊形;
要使四邊形EFGH是矩形,則需EF⊥FG,即只需AC⊥BD;
故答案為:AC⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=12,點(diǎn)E在邊BC上,且BE=2CE,將矩形沿過點(diǎn)E的直線折疊,點(diǎn)C,D的對(duì)應(yīng)點(diǎn)分別為C′,D′,折痕與邊AD交于點(diǎn)F,當(dāng)點(diǎn)B,C′,D′恰好在同一直線上時(shí),AF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一前夕,某幼兒園園長(zhǎng)到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價(jià)比B品牌服裝每套進(jìn)價(jià)多25元,用2000元購進(jìn)A種服裝數(shù)量是用750元購進(jìn)B種服裝數(shù)量的2倍.
求A、B兩種品牌服裝每套進(jìn)價(jià)分別為多少元?
該服裝A品牌每套售價(jià)為130元,B品牌每套售價(jià)為95元,服裝店老板決定,購進(jìn)B品牌服裝的數(shù)量比購進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進(jìn)A品牌的服裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)O在直線AB上,作射線OC,點(diǎn)D在平面內(nèi),∠BOD與∠AOC互余.
(1)若∠AOC:∠BOD=4:5,則∠BOD= ;
(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.
①當(dāng)點(diǎn)D在∠BOC內(nèi),補(bǔ)全圖形,直接寫出∠AON的值(用含α的式子表示);
②若∠AON與∠COD互補(bǔ),求出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中,有一道“群羊逐草”的問題,大意是:牧童甲在草原上放羊,乙牽著一只羊來,并問甲:“你的羊群有100只嗎?”甲答:“如果在這群羊里加上同樣的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”問牧童甲趕著多少只羊?若設(shè)這群羊有x只,則下列方程中,正確的是( 。
A. (1++)x=100+1 B. x+x+x+x=100﹣1 C. (1++)x=100﹣1 D. x+x+x+x=100+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊在數(shù)軸上,數(shù)軸上點(diǎn)表示的數(shù)為,正方形的面積為16.
(1)數(shù)軸上點(diǎn)表示的數(shù)為__________;
(2)將正方形沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的正方形記為,移動(dòng)后的正方形與原正方形重疊部分的面積記為.當(dāng)時(shí),畫出圖形,并求出數(shù)軸上點(diǎn)表示的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB、a、b.
(1)請(qǐng)用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)
①延長(zhǎng)線段AB到C,使BC=a;
②反向延長(zhǎng)線段AB到D,使AD=b.
(2)在(1)的條件下,如果AB=8cm,a=6m,b=10cm,且點(diǎn)E為CD的中點(diǎn),求線段AE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com