【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,點P從點A出發(fā)以lcm/s的速度沿折線AC﹣CB運動,過點P作PQ⊥AB于點Q,當點P不與點A、B重合時,以線段PQ為邊向右作正方形PQRS,設(shè)正方形PQRS與△ABC的重疊部分面積為S,點P的運動時間為t(s).
(1)用含t的代數(shù)式表示CP的長度;
(2)當點S落在BC邊上時,求t的值;
(3)當正方形PQRS與△ABC的重疊部分不是五邊形時,求S與t之間的函數(shù)關(guān)系式;
(4)連結(jié)CS,當直線CS分△ABC兩部分的面積比為1:2時,直接寫出t的值.
【答案】(1)當0<t<4時,CP=4﹣t,當4≤t<8時,CP=t﹣4;(2);(3)S=;(4)或
【解析】
(1)分兩種情形分別求解即可.
(2)根據(jù)PA+PC=4,構(gòu)建方程即可解決問題.
(3)分兩種情形:如圖2中,當0<t≤時,重疊部分是正方形PQRS,當4<t<8時,重疊部分是△PQB,分別求解即可.
(4)設(shè)直線CS交AB于E.分兩種情形:如圖4﹣1中,當AE=AB=時,滿足條件.如圖4﹣2中,當AE=AB時,滿足條件.分別求解即可解決問題.
解:(1)當0<t<4時,∵AC=4,AP=t,
∴PC=AC﹣AP=4﹣t;
當4≤t<8時,CP=t﹣4;
(2)如圖1中,點S落在BC邊上,
∵PA=t,AQ=QP,∠AQP=90°,
∴AQ=PQ=PS=t,
∵CP=CS,∠C=90°,
∴PC=CS=t,
∵AP+PC=BC=4,
∴t+t=4,
解得t=.
(3)如圖2中,當0<t≤時,重疊部分是正方形PQRS,S=(t)2=t2.
當4<t<8時,重疊部分是△PQB,S=(8﹣t)2.
綜上所述,S=.
(4)設(shè)直線CS交AB于E.
如圖4﹣1中,當AE=AB=時,滿足條件,
∵PS∥AE,
∴,
∴,
解得t=.
如圖4﹣2中,當AE=AB時,滿足條件.
同法可得:,
解得t=,
綜上所述,滿足條件的t的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某中學九年級數(shù)學活動小組選定測量學校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1:,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學概念
若點在的內(nèi)部,且、和中有兩個角相等,則稱是的“等角點”,特別地,若這三個角都相等,則稱是的“強等角點”.
理解概念
(1)若點是的等角點,且,則的度數(shù)是 .
(2)已知點在的外部,且與點在的異側(cè),并滿足,作的外接圓,連接,交圓于點.當的邊滿足下面的條件時,求證:是的等角點.(要求:只選擇其中一道題進行證明。
①如圖①,
②如圖②,
深入思考
(3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強等角點.(不寫作法,保留作圖痕跡)
(4)下列關(guān)于“等角點”、“強等角點”的說法:
①直角三角形的內(nèi)心是它的等角點;
②等腰三角形的內(nèi)心和外心都是它的等角點;
③正三角形的中心是它的強等角點;
④若一個三角形存在強等角點,則該點到三角形三個頂點的距離相等;
⑤若一個三角形存在強等角點,則該點是三角形內(nèi)部到三個頂點距離之和最小的點,其中正確的有 .(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點△ABC(頂點在網(wǎng)格線的交點上)的頂點A、C的坐標分別為A(﹣3,5)、C(0,3).
(1)請在網(wǎng)格所在的平面內(nèi)畫出平面直角坐標系,并寫出點B的坐標.
(2)將△ABC繞著原點順時針旋轉(zhuǎn)90°得△A1B1C1,畫出△A1B1C1.
(3)在直線y=1上存在一點P,使PA+PC的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).
(1)求直線與雙曲線的解析式.
(2)點P在x軸上,如果S△ABP=3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?
(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com