【題目】某中學九年級數(shù)學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

【答案】解:根據(jù)題意,得∠ADB=64°,∠ACB=48°
在Rt△ADB中,tan64°= ,
則BD= AB,
在Rt△ACB中,tan48°=
則CB= AB,
∴CD=BC﹣BD
即6= AB﹣ AB
解得:AB= ≈14.7(米),
∴建筑物的高度約為14.7米.
【解析】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是利用數(shù)形結合的思想找出各邊之間的關系,然后找出所求問題需要的條件.Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據(jù)CD=BC﹣BD可得關于AB 的方程,解方程可得.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點D,連結AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結BE,得到四邊形ABED.則BE的長是(

A.4
B.
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3SEDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2 , 并直接寫出點B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人利用撲克牌玩“10點”游戲,游戲規(guī)則如下:
①將牌面數(shù)字作為“點數(shù)”,如紅桃6的“點數(shù)”就是6(牌面點數(shù)與牌的花色無關);
②兩人摸牌結束時,將所摸牌的“點數(shù)”相加,若“點數(shù)”之和小于或等于10,此時“點數(shù)”之和就是“最終點數(shù)”;若“點數(shù)”之和大于10,則“最終點數(shù)”是0;
③游戲結束前雙方均不知道對方“點數(shù)”;
④判定游戲結果的依據(jù)是:“最終點數(shù)”大的一方獲勝,“最終點數(shù)”相等時不分勝負.
現(xiàn)甲、乙均各自摸了兩張牌,數(shù)字之和都是5,這時桌上還有四張背面朝上的撲克牌,牌面數(shù)字分別是4,5,6,7.

(1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為;
(2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌.請用樹狀圖或表格表示出這次摸牌后所有可能的結果,再列表呈現(xiàn)甲、乙的“最終點數(shù)”,并求乙獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=6,O是AB的中點,直線l經(jīng)過點O,∠1=120°,P是直線l上一點,當△APB為直角三角形時,AP=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB和拋物線交于點A(﹣4,0),B(0,4),且點B是拋物線的頂點.

(1)求直線AB和拋物線的解析式.
(2)點P是直線上方拋物線上的一點,求當△PAB面積最大時點P的坐標.
(3)M是直線AB上一動點,在平面直角坐標系內(nèi)是否存在點N,使以O、B、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案