【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是多少?
【答案】25.
【解析】
試題分析:要求長(zhǎng)方體中兩點(diǎn)之間的最短路徑,最直接的作法,就是將長(zhǎng)方體側(cè)面展開(kāi),然后利用兩點(diǎn)之間線段最短解答.
試題解析:只要把長(zhǎng)方體的右側(cè)表面剪開(kāi)與前面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第1個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB=;
只要把長(zhǎng)方體的右側(cè)表面剪開(kāi)與上面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第2個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
∴BD=CD+BC=20+5=25,AD=10,
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB=;
只要把長(zhǎng)方體的上表面剪開(kāi)與后面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第3個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
∴AC=CD+AD=20+10=30,
在直角三角形ABC中,根據(jù)勾股定理得:
∴AB=;
∵25<<,
∴螞蟻爬行的最短距離是25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和CD交于點(diǎn)O,∠COE=90°,OC平分∠AOF,∠COF=35°.
(1)求∠BOD的度數(shù);
(2)OE平分∠BOF嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回)其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球其數(shù)字記為q,則滿足關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( 。.
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)閱讀下面例題,解答問(wèn)題
例題:已知二次三項(xiàng)式x2﹣4x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.
解:設(shè)另一個(gè)因式為(x+n),得x2﹣4x+m=(x+3)(x+n),
則x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一個(gè)因式為(x﹣7),m的值為﹣21.
問(wèn)題:
(1)若二次三項(xiàng)式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;
(2)若二次三項(xiàng)式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;
(3)仿照以上方法解答下面問(wèn)題:若二次三項(xiàng)式2x2+3x﹣k有一個(gè)因式是(2x﹣5),求另一個(gè)因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說(shuō)法正確的是( ).
A.連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B.連續(xù)拋一枚均勻硬幣10次,不可能正面都朝上
C.大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次
D.通過(guò)拋一枚均勻硬幣確定誰(shuí)先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖中有四條互相不平行的直線、、、所截出的七個(gè)角,關(guān)于這七個(gè)角的度數(shù)關(guān)系,下列選項(xiàng)正確的是( )
A. ∠2=∠4+∠5 B. ∠3=∠1+∠6 C. ∠1+∠4+∠7=180° D. ∠5=∠1+∠4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4 cm,BC=8 cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.點(diǎn)P,Q的速度的速度都是1 cm/s,連結(jié)PQ,AQ,CP,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形?
(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形?
(3)分別求出(2)中菱形AQCP的周長(zhǎng)和面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com