(2013•鹽城模擬)如圖(1),分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上)交y軸于另一點(diǎn)Q,拋物線
y=x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),B點(diǎn)坐標(biāo)為(2,2).
(1)求拋物線的函數(shù)解析式和點(diǎn)E的坐標(biāo);
(2)求證:ME是⊙P的切線;
(3)如圖(2),點(diǎn)R從正方形CDEF的頂點(diǎn)E出發(fā)以1個(gè)單位/秒的速度向點(diǎn)F運(yùn)動,同時(shí)點(diǎn)S從點(diǎn)Q出發(fā)沿y軸以5個(gè)單位/秒的速度向上運(yùn)動,連接RS,設(shè)運(yùn)動時(shí)間為t秒(0<t<1),在運(yùn)動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;