【題目】如圖,四邊形是矩形 ,延長線上的一點,上一點,;, = ________ .

【答案】

【解析】由矩形的性質(zhì)得出∠BCD=90°,ABCD,ADBC,證出∠FEA=ECD,DAC=ACB=21°,由三角形的外角性質(zhì)得出∠ACF=2FEA,設(shè)∠ECD=x,則∠ACF=2x,ACD=3x,由互余兩角關(guān)系得出方程,解方程即可.

∵四邊形ABCD是矩形,

∴∠BCD=90°,ABCD,ADBC,

∴∠FEA=ECD,DAC=ACB=21°,

∵∠ACF=AFC,FAE=FEA,

∴∠ACF=2FEA,

設(shè)∠ECD=x,則∠ACF=2x,

∴∠ACD=3x,

3x+21°=90°,

解得:x=23°.

故答案為:23°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運40千克,A型機器人搬運1200千克所用時間與B型機器人搬運800千克所用時間相等.設(shè)B型機器人每小時搬運化工原料x千克,根據(jù)題意可列方程為(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人5次射擊命中的環(huán)數(shù)如下:

7

9

8

6

10

7

8

9

8

8

則以下判斷中正確的是(
A. = , S2=S2
B. = , S2>S2
C. = , S2<S2
D. , S2<S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A,B是數(shù)軸上的點,且點A表示數(shù)-3,請參照圖并思考,完成下列各題:

(1)將A點向右移動4個單位長度,那么終點B表示的數(shù)是 ,此時 A,B兩點間的距離是 .

(2)若把數(shù)軸繞點A對折,則對折后,B落在數(shù)軸上的位置所表示的數(shù)為 .

(3)若(1)中點B以每秒2個單位長度沿數(shù)軸向左運動,A不動,多長時間后,B與點A距離為2個單位長度?試列式計算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:當(dāng)AM的值為 時,四邊形AMDN是矩形;當(dāng)AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1)7(2x–1)–3(4x–1)=4(3x+2)–1;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:德國著名數(shù)學(xué)家高斯被認(rèn)為是歷史上最重要的數(shù)學(xué)家之一,并有"數(shù)學(xué)王子"的美譽.高斯從小就善于觀察和思考.在他讀小學(xué)時候就能在課堂上快速的計算出,今天我們可以將高斯的做法歸納如下:

(右邊相加100+1=2+99=3+98=…..=100+1100組)

①+②:有2S=101x100 解得:

(1)請參照以上做法,回答,3+5+7+9+…..+97= ;

請嘗試解決下列問題:

如下圖,有一個形如六邊形的點陣,它的中心是一個點,算第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.

(2)填寫下表:

層數(shù)

1

2

3

4

該層對應(yīng)的點數(shù)

1

6

12

18

所有層的總點數(shù)的和

1

7

19

寫出第n層所對應(yīng)的點數(shù);n≥2)

②如果某一層共96個點,求它是第幾層;

③寫出n層的六邊形點陣的總點數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點CAB上,點M、N分別是AC、BC的中點,

(1)AC=12cm,BC=10cm,求線段MN的長;

(2)若點C為線段AB上任意一點,滿足AC+BC=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由;

(3)若點C在線段AB的延長線上,且滿足AC-BC=bcm,點M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,并說明理由.請用一句簡潔的話描述你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2 , 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 下列判斷: ①當(dāng)x>2時,M=y2
②當(dāng)x<0時,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,則x=1.
其中正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案