【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長為半徑畫弧,分別交AC,AB于D,E兩點,并連結(jié)BD,DE. 則∠BDE的度數(shù)為

【答案】67.5°
【解析】解:∵AB=AC,
∴∠ABC=∠ACB,
∵∠A=30°,
∴∠ABC=∠ACB= (180°﹣30°)=75°,
∵以B為圓心,BC長為半徑畫弧,
∴BE=BD=BC,
∴∠BDC=∠ACB=75°,
∴∠CBD=180°﹣75°﹣75°=30°,
∴∠DBE=75°﹣30°=45°,
∴∠BED=∠BDE= (180°﹣45°)=67.5°.
所以答案是:67.5°
【考點精析】掌握等腰三角形的性質(zhì)是解答本題的根本,需要知道等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=,的圖象向下平移2個單位后得直線l,直線lx軸于點A、交y軸于點B,在線段AB上有一動點P(不與點A、B重合),過點P分別作PE⊥x軸點E,PF⊥y軸于點F,當線段EF的長最小時,點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一列有序數(shù)對:(1,2),(4,5),(9,10),(16,17),…,按此規(guī)律,第5對有序數(shù)對為;若在平面直角坐標系xOy中,以這些有序數(shù)對為坐標的點都在同一條直線上,則這條直線的表達式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.

(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.點P為直線AB上一個動點(點P不與點A,B重合),連接PC,點D在直線BC上,且PD=PC.過點P作PE^PC,點D,E在直線AC的同側(cè),且PE=PC,連接BE.
(1)情況一:當點P在線段AB上時,圖形如圖1 所示;
情況二:如圖2,當點P在BA的延長線上,且AP<AB時,請依題意補全圖2;.

(2)請從問題(1)的兩種情況中,任選一種情況,完成下列問題:
①求證:∠ACP=∠DPB;
②用等式表示線段BC,BP,BE之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中,過點D作對DE⊥AB于點E,點F在邊CD上,CF=AE,連結(jié)AF,BF.

(1)求證:四邊形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的角平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當自變量x=a時,相應的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對應的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.

觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點的個數(shù)是
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2
①求零點為x1 , x2(用a表示);
②在平面直角坐標xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達式并直接寫出線段PQ長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,過坐標原點O的直線l與雙曲線y= 相交于點A(m,3).
(1)求直線l的表達式;
(2)過動點P(n,0)且垂于x軸的直線與l及雙曲線的交點分別為B,C,當點B位于點C上方時,寫出n的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

同步練習冊答案