【題目】如圖1,設(shè)是一個銳角三角形,且,為其外接圓,分別為其外心和垂心,為圓直徑,為線段上一動點(diǎn)且滿足

1)證明:中點(diǎn);

2)過的平行線交于點(diǎn),若的中點(diǎn),證明: ;

3)直線與圓的另一交點(diǎn)為(如圖2),以為直徑的圓與圓的另一交點(diǎn)為.證明:若三線共點(diǎn),則;反之也成立.

【答案】1)見解析;(2)見解析;(3)見解析

【解析】

1)連接AD,BD,得,結(jié)合H為垂心,,得出四邊形為平行四邊形,得到,結(jié)合平行,OCD中點(diǎn),可得MBC中點(diǎn);

2)過,由, 為平行四邊形,證明H為的垂心,從而得到;

3)設(shè)交點(diǎn)為,得到,證明H的垂心,證明三線共點(diǎn)得三點(diǎn)共線,得到

解:(1)連接,則,

垂心

,

∴四邊形為平行四邊形

,又中點(diǎn)

中點(diǎn)

2)過

連接,由(1)可知四邊形為平行四邊形,四邊形為平行四邊形

垂心

3)設(shè)交點(diǎn)為

由(1)可知四邊形為平行四邊形

為直徑中點(diǎn)

而圓與圓相交弦為

設(shè)

垂心

三線共點(diǎn)三點(diǎn)共線

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點(diǎn),BCx軸于點(diǎn)C,若OBC的面積為2,且A點(diǎn)的縱坐標(biāo)為4,B點(diǎn)的縱坐標(biāo)為1

1)求反比例函數(shù)、一次函數(shù)的表達(dá)式及直線ABx軸交點(diǎn)E的坐標(biāo);

2)已知點(diǎn)Dt,0)(t0),過點(diǎn)D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點(diǎn)P,與反比函數(shù)上的圖像相交于點(diǎn)Q,若點(diǎn)P位于點(diǎn)Q的上方,請結(jié)合函數(shù)圖像直接寫出此時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一款雷達(dá)式懶人椅.當(dāng)懶人椅完全展開時,其側(cè)面示意圖如圖2所示,金屬桿AB、CD在點(diǎn)O處連接,且分別與金屬桿EF在點(diǎn)B,D處連接.金屬桿CDOD部分可以伸縮(即OD的長度可變).已知OA50cm,OB20cm,OC30cmDEBF5cm.當(dāng)把懶人椅完全疊合時,金屬桿AB,CD,EF重合在一條直線上(如圖3所示),此時點(diǎn)E和點(diǎn)A重合.

1)如圖2,已知∠BOD6ODB,∠OBF140°

①求∠AOC的度數(shù).

②求點(diǎn)A,C之間的距離.

2)如圖3,當(dāng)懶人椅完全疊合時,求CFCD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市中學(xué)生參加“科普知識”競賽成績的情況,隨機(jī)抽查了部分參賽學(xué)生的成績,作出如圖所示的統(tǒng)計圖和統(tǒng)計表請根據(jù)圖表信息,解答下列問題:

1)在表中:m=  ,n=   ;在圖中補(bǔ)全頻數(shù)分布直方圖;

2)小明的成績是所有被抽查學(xué)生成績的中位數(shù),據(jù)此推斷他的成績在   組;

34個小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎典禮,恰好抽中AC兩組學(xué)生的概率是多少?請用列表法或畫樹狀圖法說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】均為自然數(shù),則關(guān)于的方程的解共有( )個(表示不超過實數(shù)的最大整數(shù))

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠C=90°,AC=BC=,直線L過AB中點(diǎn)O,過點(diǎn)A、C分別向直線L作垂線,垂足分別為E、F.若CF=1,則EF=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y= x2+bx+cx軸負(fù)半軸交于A點(diǎn),與x軸正半軸交于B點(diǎn),與y軸正半軸交于C點(diǎn),COBO,AB=14

1)求拋物線的解析式;

2)如圖2, 點(diǎn)M、N在第一象限內(nèi)拋物線上,MN點(diǎn)下方,連CM、CN,∠OCN+OCM180°, 設(shè)M點(diǎn)橫坐標(biāo)為mN點(diǎn)橫坐標(biāo)為n,求mn的函數(shù)關(guān)系式(n是自變量);

3)如圖3, (2)條件下,連ANCOE,過MMFABF,連BM、EF,若∠AFE2FMB=2β, N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究請補(bǔ)充完整以下探索過程:

1)列表:

x

-5

-4

-3

-2

-1

0

1

2

3

4

y

m

0

-3

-4

-3

0

-3

-4

n

0

直接寫出________,________;

2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):

性質(zhì)1______________________________________________________

性質(zhì)2_______________________________________________________

3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ca0)與x軸交于A﹣2,0)、B4,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=2OA

1)試求拋物線的解析式;

2)直線y=kx+1k0)與y軸交于點(diǎn)D,與拋物線交于點(diǎn)P,與直線BC交于點(diǎn)M,記m=,試求m的最大值及此時點(diǎn)P的坐標(biāo);

3)在(2)的條件下,點(diǎn)Qx軸上的一個動點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)的一點(diǎn),是否存在這樣的點(diǎn)Q、N,使得以P、D、Q、N四點(diǎn)組成的四邊形是矩形?如果存在,請求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案