15.小明想要測(cè)量公園內(nèi)一座樓CD的高度.他先在A處測(cè)得樓頂C的仰角α=30°,再向樓的方向直行10米到達(dá)B處,又測(cè)得樓頂C的仰角β=60°,若小明的眼睛到地面的高度AE為1.60米,請(qǐng)你幫助他計(jì)算出這座樓CD的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{5}$≈2.24.

分析 由α=30°,β=60°,可求得∠ECF=α=30°,然后由等角對(duì)等邊,可得CF=EF=10米,則可求得CG的長(zhǎng),繼而求得這座樓CD的高度.

解答 解:∵α=30°,β=60°,
∴∠ECF=β-α=30°.
∴CF=EF=10米,
在Rt△CFG中,CG=CF•cosβ=5$\sqrt{3}$(米),
∴CD=CG+GD=5$\sqrt{3}$+1.60≈10.3( 米).
答:這座樓的高度約為10.3米.

點(diǎn)評(píng) 本題考查解直角三角形的應(yīng)用-仰角俯角問(wèn)題.注意能借助仰角構(gòu)造直角三角形并解直角三角形是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,有一半圓形橋拱,拱的跨度AB=40米,那么橋拱的弧長(zhǎng)為62.8米.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去興化李中水上森林游玩.
(1)小明和小剛都在本周日上午去游玩的概率為$\frac{1}{4}$;
(2)求他們?nèi)嗽谕粋(gè)半天去游玩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在平面直角坐標(biāo)系中有一個(gè)四邊形OABC,其中CB∥x軸,OC=3,BC=2,∠OAB=45°.
(1)求點(diǎn)A,B的坐標(biāo);
(2)求出直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知:在△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為線段BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊向右作正方形ADEF,連接FC,探究:無(wú)論點(diǎn)D運(yùn)動(dòng)到何處,線段FC、DC、BC三者的長(zhǎng)度之間都有怎樣的數(shù)量關(guān)系?請(qǐng)予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.一塊直角三角形綠地,兩直角邊長(zhǎng)分別為3m,4m,現(xiàn)在要將綠地?cái)U(kuò)充成等腰三角形,且擴(kuò)充時(shí)只能延長(zhǎng)長(zhǎng)為3m的直角邊,則擴(kuò)充后等腰三角形綠地的面積為8或15m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列事件中,是必然事件的是( 。
A.明天太陽(yáng)從東方升起
B.射擊運(yùn)動(dòng)員射擊一次,命中靶心
C.隨意翻到一本書(shū)的某頁(yè),這頁(yè)的頁(yè)碼是奇數(shù)
D.經(jīng)過(guò)有交通信號(hào)燈的路口,遇到紅燈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知M(1,-2),N(-3,-2),則直線MN與x軸,y軸的位置關(guān)系分別為(  )
A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法:①兩點(diǎn)之間的所有連線中,線段最短;②相等的角是對(duì)頂角; ③過(guò)一點(diǎn)有且僅有一條直線與己知直線平行; ④兩點(diǎn)之間的距離是兩點(diǎn)間的線段; ⑤若AB=BC,則點(diǎn)B為線段AC的中點(diǎn);⑥不相交的兩條直線叫做平行線.其中正確的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案