【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的解析式.
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?求P坐標及最大面積是多少?
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,直接寫出M的坐標.
【答案】(1)y=-x2+4x+5,(2),P(,);(3)M1(3,8),M2(1,8).
【解析】
(1)設出拋物線解析式,用待定系數(shù)法求解即可;
(2)先求出直線AB解析式,設出點P坐標(x,x2+4x+5),建立函數(shù)關系式S四邊形APCD=2x2+10x,根據(jù)二次函數(shù)求出極值;
(3)先判斷出△HMN≌△AOE,求出M點的橫坐標,從而求出點M的坐標.
(1)設拋物線解析式為y=a(x2)2+9,
∵拋物線與y軸交于點A(0,5),
∴4a+9=5,
∴a=1,
y=(x2)2+9=x2+4x+5,
(2)當y=0時,x2+4x+5=0,
∴x1=1,x2=5,
∴E(1,0),B(5,0),
設直線AB的解析式為y=mx+n,
∵A(0,5),B(5,0),
∴m=1,n=5,
∴直線AB的解析式為y=x+5;
設P(x,x2+4x+5),
∴D(x,x+5),
∴PD=x2+4x+5+x5=x2+5x,
∵AC=4,
∴S四邊形APCD=×AC×PD=2(x2+5x)=2x2+10x,
∴當x=時,S=,
∴即:點P(,)時,S四邊形APCD最大=,
(3)如圖,
過M作MH垂直于對稱軸,垂足為H,
∵MN∥AE,MN=AE,
∴△HMN≌△AOE
∴HM=OE=1,
∴M點的橫坐標為x=3或x=1,
當x=1時,M點縱坐標為8,
當x=3時,M點縱坐標為8,
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線:交軸于點,,交軸于點.
(1)直接寫出當時,的取值范圍是____________;
(2)點在拋物線上,求的面積;
(3)如圖2,將拋物線平移,使其頂點為原點,得到拋物線,直線與拋物線交于、兩點,點是線段上一動點(不與、重合),試探究拋物線上是否存在點,點關于點的中心對稱點也在拋物線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40元,經(jīng)過調查發(fā)現(xiàn),銷售單價每降低5元,每天可多售出10件,下列說法錯誤的是( )
A.銷售單價降低15元時,每天獲得利潤最大
B.每天的最大利潤為1250元
C.若銷售單價降低10元,每天的利潤為1200元
D.若每天的利潤為1050元,則銷售單價一定降低了5元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊共同承建某高速路隧道工程,隧道總長2000米,甲、乙分別從隧道兩端向中間施工,計劃每天各施工6米.因地質情況不同,兩支隊伍每合格完成1米隧道施工所需成本不一樣.甲每合格完成1米,隧道施工成本為6萬元;乙每合格完成1米,隧道施工成本為8萬元.
(1)若工程結算時乙總施工成本不低于甲總施工成本的,求甲最多施工多少米?
(2)實際施工開始后因地質情況比預估更復雜,甲乙兩隊每日完成量和成本都發(fā)生變化.甲每合格完成1米隧道施工成本增加m萬元時,則每天可多挖m米,乙因特殊地質,在施工成本不變的情況下,比計劃每天少挖m米,若最終每天實際總成本比計劃多(11m-8)萬元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為m,到墻邊OA的距離分別為m,m.
(1)求該拋物線的函數(shù)關系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10 m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń夥匠獭?/span>
(1)4(x-3) =36
(2)x2-4x+1=0.
(3)-7x+6=0
(4)
(5)(y-1)2+2y(1-y)=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“共和國勛章”是中華人民共和國的最高榮譽勛章.在2019年獲得“共和國勛章”的八位杰出人物中,有于敏、孫家棟、袁隆平、黃旭華四位院士.如圖是四位院士(依次記為A,B,C,D)為讓同學們了解四位院士的貢獻,老師設計如下活動:取四張完全相同的卡片,分別寫上A,B,C,D四個標號,然后背面朝上放置,攪勻后每個同學可從中隨機抽取一張,記下標號后放回,老師要求每位同學根據(jù)抽到的卡片上的標號查找相應院士的資料制作小報,求小明和小華查找同一位院士資料的概率.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,甲、乙兩人在玩轉盤游戲時,分別把轉盤A,B分成3等份和1等份,并在每一份內標上數(shù)字.游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,指針所在區(qū)域的數(shù)字之積為奇數(shù)時,甲獲勝;當數(shù)字之積為偶數(shù)時,乙獲勝.如果指針恰好在分割線上時,則需重新轉動轉盤.
(1)利用畫樹狀圖或列表的方法,求甲獲勝的概率.
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,請你在轉盤A上只修改一個數(shù)字使游戲公平(不需要說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,BC=5,點D、E分別在邊BC、AC上,且BD=CE,將△CDE沿DE翻折,點C落在點F處,且DF∥AB,則BD的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com