【題目】勒洛三角形是以等邊三角形每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形,如圖所示,若等邊三角形的邊長(zhǎng)為1,則該勒洛三角形的面積為_____

【答案】

【解析】

設(shè)等邊ABC的中心為點(diǎn)O,連接OA,OB,OC,過點(diǎn)OODAB于點(diǎn)D,根據(jù)銳角三角函數(shù)的定義,求出AO,OD的長(zhǎng),從而求出,進(jìn)而可得,根據(jù)扇形的面積公式,得,進(jìn)而可得,然后即可得到答案.

設(shè)等邊ABC的中心為點(diǎn)O,連接OA,OB,OC,過點(diǎn)OODAB于點(diǎn)D,則OA=OB=OC,∠AOB=BOC=COA=120°,

OA=OB,ODAB,

∴∠AOD=AOB=60°, AD=BD=AB=,

∵在RtAOD中,sin60°=,即:

AO=,

∵在RtAOD中,∠OAD=90°-60°=30°,

OD=OA=,

,

,

∴勒洛三角形的面積==

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,基燈塔AB建在陡峭的山坡上,該山坡的坡度i10.75.小明為了測(cè)得燈塔的高度,他首先測(cè)得BC20m,然后在C處水平向前走了34m到達(dá)一建筑物底部E處,他在該建筑物頂端F處測(cè)得燈塔頂端A的仰角為43°.若該建筑物EF20m,則燈塔AB的高度約為(精確到0.1m,參考數(shù)據(jù):sin43°0.68cos43°0.73,tan43°0.93)(

A.46.7mB.46.8mC.53.5mD.67.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字12B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣22.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)?/span>B布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(x,y).

1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);

2)求點(diǎn)Q落在直線y=﹣x上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示的是寶雞市文化景觀標(biāo)志“天下第一燈”,它由國(guó)際不銹鋼板整體鍛造,表面涂有仿古金色漆,以仿青銅紋飾雕刻的柱體四盞燈分層布置.一天上午,數(shù)學(xué)興趣小組的同學(xué)們帶著測(cè)量工具來測(cè)量“天下第一燈”的高度,由于有圍欄保護(hù),他們無法到達(dá)燈的底部他們制定了一種測(cè)量方案,圖2所示的是他們測(cè)量方案的示意圖,先在周圍的廣場(chǎng)上選擇一點(diǎn)并在點(diǎn)處安裝了測(cè)量器在點(diǎn)處測(cè)得該燈的頂點(diǎn)P的仰角為;再在的延長(zhǎng)線上確定一點(diǎn)使米,在點(diǎn)處測(cè)得該燈的頂點(diǎn)的仰角為.若測(cè)量過程中測(cè)量器的高度始終為米,求“天下第一燈”的高度.,最后結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng),中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校九年級(jí)組織600名學(xué)生參加了一次“漢字聽寫”大賽賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于60分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本,成績(jī)?nèi)缦拢?/span>

90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.

對(duì)上述成績(jī)進(jìn)行了整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)

頻數(shù)

頻率

6

8

a

b

c

d

請(qǐng)根據(jù)所給信息,解答下列問題:

______,____________,______

請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

若成績(jī)?cè)?/span>90分以上包括90的為“優(yōu)”等,請(qǐng)你估計(jì)參加這次比賽的600名學(xué)生中成績(jī)“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,為正方形的中點(diǎn),,連接,

1)求證:①;

;

2)如圖2,若,作,分別交,于點(diǎn),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(m,n 為常數(shù))

1)若拋物線的的對(duì)稱軸為直線 x=1,且經(jīng)過點(diǎn)(0-1),求 m,n 的值;

2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求 n 的取值范圍;

3)在(1)的條件下,存在正實(shí)數(shù) ab( ab),當(dāng) axb 時(shí),恰好有,請(qǐng)直接寫出 ab 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC90°,直角∠EPF的頂點(diǎn)PBC的中點(diǎn),兩邊PEPF分別交AB,AC于點(diǎn)EF,現(xiàn)給出以下四個(gè)結(jié)論:(1AECF;(2EPF是等腰直角三角形;(3S四邊形AEPFSABC;(4)當(dāng)∠EPFABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)始終有EFAP.(點(diǎn)E不與A、B重合),上述結(jié)論中是正確的結(jié)論的概率是( 。

A.1個(gè)B.3個(gè)C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案