【題目】如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為( )
A.30,2
B.60,2
C.60,
D.60,
【答案】C
【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,
∴∠B=60°,AC=BC×cot∠A=2× =2 ,AB=2BC=4,
∵△EDC是△ABC旋轉(zhuǎn)而成,
∴BC=CD=BD= AB=2,
∵∠B=60°,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∴∠DCF=30°,∠DFC=90°,即DE⊥AC,
∴DE∥BC,
∵BD= AB=2,
∴DF是△ABC的中位線,
∴DF= BC= ×2=1,CF= AC= ×2 = ,
∴S陰影= DF×CF= × = .
故答案為:C.
先根據(jù)已知條件求出AC的長及∠B的度數(shù),再根據(jù)圖形旋轉(zhuǎn)的性質(zhì)及等邊三角形的判定定理判斷出△BCD的形狀,進而得出∠DCF的度數(shù),由直角三角形的性質(zhì)可判斷出DF是△ABC的中位線,由三角形的面積公式即可得出結(jié)論。
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,在平面直角坐標系中,反比例函數(shù)的圖象和矩形ABCD在第二象限,AD平行于x軸,且AB=2,AD=4,點C的坐標為(﹣2,4).
(1)直接寫出A、B、D三點的坐標;
(2)若將矩形只向下平移,矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式和此時直線AC的解析式y=mx+n.并直接寫出滿足的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;
(2)C組學生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明過程:
已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,
求證:∠3=∠B
證明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 內(nèi)錯角相等,兩直線平行)
∴EF∥_____ ( )
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對某市中學生的幸福指數(shù)進行調(diào)查,從中抽取部分學生的調(diào)查表問卷進行統(tǒng)計,并繪制出不完整的統(tǒng)計表和條形統(tǒng)計圖。
等級 | 頻數(shù) | 頻率 |
★ | 60 | |
★★ | 80 | |
★★★ | 0.16 | |
★★★★ | 0.30 | |
★★★★★ |
(1)直接補全統(tǒng)計表;
(2)補全條形統(tǒng)計圖(不要求寫出計算過程);
(3)抽查的學生約占全市中學生的5%,估計全市約有多少名學生的幸福指數(shù)能達到五★級?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=45°.以AB為直徑的⊙O與BC相切于B,交AC于點D,CO的延長線交⊙O于點E,過點作弦EF⊥AB,垂足為點G.
(1)求證:①EF∥CB,②AD=CD;
(2)若AB=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:(1)兩直線平行,內(nèi)錯角相等;(2)如果m是無理數(shù),那么m是無限小數(shù);(3)64的立方根是8;(4)同旁內(nèi)角相等,兩直線平行;(5)如果a是實數(shù),那么是無理數(shù).(6)平面內(nèi)的一條直線和兩條平行線中的一條相交,則它與另一條也相交;(7)直線外一點到這條直線的垂線段,叫做該點到直線的距離;(8)過一點作已知直線的平行線,有且只有一條.其中是真命題的有 ( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知射線CB//OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度數(shù).(直接寫出結(jié)果,無需解答過程)
∠EOB=__________°
(2)若在OC右側(cè)左右平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,請找出變化規(guī)律;若不變,請求出這個比值.
(3)在OC右側(cè)左右平行移動AB的過程中,是否存在使∠OEC=∠OBA的情況?若存在,請直接寫出∠OEC度數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com