【題目】問題:在1~n(n ≥2)這n個自然數(shù)中,每次取兩個數(shù)(不分順序),使得所取兩數(shù)之和大于n,共有多少種取法?
探究:不妨設(shè)有m種取法,為了探究m與n的關(guān)系,我們先從簡單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.
探究一:在1~2這2個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于2,有多少種取法?
根據(jù)題意,有下列取法:1+2,共1種取法.
所以,當(dāng)n=2時,m=1.
探究二:在1~3這3個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于3,有多少種取法?
根據(jù)題意,有下列取法:1+3,2+3,共2種取法.
所以,當(dāng)n=3時,m=2.
探究三:在1~4這4個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于4,有多少種取法?
根據(jù)題意,有下列取法:1+4,2+4,3+4,2+3,共有3+1=4種取法.
所以,當(dāng)n=4時,m=3+1=4.
探究四:在1~5這5個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于5,有多少種取法?
根據(jù)題意,有下列取法:1+5, 2+5, 3+5, 4+5,2+4,3+4,共有4+2=6種不同的取法.
所以,當(dāng)n=5時,m=4+2=6.
探究五:在1~6這6個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于6,有多少種不同的取法?(仿照上述探究方法,寫出解答過程)
探究六:在1~7這7個自然數(shù)中,每次取兩個不同的數(shù),使得所取的兩個數(shù)之和大于7,共有 種取法?(直接寫出結(jié)果)
不妨繼續(xù)探究n=8,9,···時,m與n的關(guān)系.
結(jié)論:在1~n這n個自然數(shù)中,每次取兩個數(shù),使得所取的兩個數(shù)字之和大于n,當(dāng)n為偶數(shù)時,共有___種取法;當(dāng)n為奇數(shù)時,共有___種取法;(只填最簡算式)
應(yīng)用:(1)各邊長都是自然數(shù),最大邊長為11的不等邊三角形共有 個
(2)各邊長都是自然數(shù),最大邊長為12的三角形共有 個
【答案】探究五:有9種不同的取法,解答過程見解析;
探究六:12;
結(jié)論:,;
應(yīng)用:(1)20;(2)42.
【解析】
探究五和探究六依照上述過程寫出即可;
結(jié)論:根據(jù)n=2~7時,對應(yīng)m的值,總結(jié)規(guī)律即可;
應(yīng)用:(1)相當(dāng)于求出n=10(偶數(shù))時,對應(yīng)的m的值,再減去相加等于11的情況;
(2)分兩種情況計算:當(dāng)三角形是不等邊三角形時,按(1)同理得出有25個三角形;當(dāng)三角形是等腰三角形時,再分12為腰和12為底兩種情況討論求解.
探究五:根據(jù)題意,有下列取法:1+6,2+6,3+6,4+6,5+6;2+5,3+5,4+5;4+3共有5+3+1=9種取法,所以,當(dāng)n = 6時,m = 9;
探究六:根據(jù)題意,有下列取法:1+7,2+7,3+7,4+7,5+7,6+7;2+6,3+6,4+6,5+6;3+5,4+5;共有6+4+2=12種取法,所以,當(dāng)n = 7時,m = 12;
結(jié)論:根據(jù)n=2~7時,對應(yīng)m的值,可得:當(dāng)n為偶數(shù)時,共有種取法,當(dāng)n為奇數(shù)時,共有種取法;
應(yīng)用:(1)∵最大邊長為11,
∴設(shè)另兩邊為a、b,a≠b≠11,
∴另兩邊長可能為:1,2,3,4,5,6,7,8,9,10,
∴a+b>10,共有:=25(個),
∵a+b>11,
∴共有25-5=20(個),
即各邊長都是自然數(shù),最大邊長為11的不等邊三角形共有20個;
(2)最大邊長為12,設(shè)另兩邊為a、b,
當(dāng)三角形是不等邊三角形時,則另兩邊長可能為:1,2,3,4,5,6,7,8,9,10,11,
∴a+b>11,共有:(個),
∵a+b>12,
∴不等邊三角形共有:30-5=25(個),
當(dāng)三角形是等腰三角形時,①底為12,腰長分別為11,10,9,8,7,一共5個,②腰為12,底為1,2,3,4,5,6,7,8,9,10,11,12,共12個,
綜上所述,一共有25+5+12=42(個).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象以A(﹣1,4)為頂點,且過點B(2,﹣5)
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo);
(3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點時,A、B兩點隨圖象移至A′、B′,求△O A′B′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點,,與軸交于點,對稱軸為直線,對稱軸交軸于點.
(1)求拋物線的函數(shù)解析式;
(2)設(shè)為對稱軸上一動點,求周長的最小值;
(3)設(shè)為拋物線上一點,為對稱軸上一點,若以點為頂點的四邊形是菱形,則點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊長和寬分別為30cm和20cm的矩形鐵皮,要在它的四角截去四個邊長相等的小正方形,折成一個無蓋的長方體盒子,使它的側(cè)面積為272cm2,則截去的正方形的邊長是( )cm
A.4cmB.8.5cmC.4cm或8.5cmD.5cm或7.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,,繞點順時針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點.
(1)當(dāng)繞點旋轉(zhuǎn)到時(如圖1),求證:;
(2)當(dāng)繞點旋轉(zhuǎn)到時(如圖2),則線段和之間數(shù)量關(guān)系是 ;
(3)當(dāng)繞點旋轉(zhuǎn)到如圖3的位置時,猜想線段和之間又有怎樣的的數(shù)量關(guān)系呢?并對你的猜想加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在邊長為l的正方形網(wǎng)格中如圖所示.
①以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點C的異側(cè),并表示出A1的坐標(biāo).
②作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.
③在②的條件下求出點B經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知三個頂點分別為,,.
(1)以原點為位似中心,在軸的上方畫出,使與位似,且相似比為;
(2)的面積是__________平方單位;
(3)點為內(nèi)一點,則在內(nèi)的對應(yīng)點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A(2,0)和拋物線L上的點B(﹣1,n),請完成下列任務(wù):
(嘗試)
(1)當(dāng)t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標(biāo)為 ;
(2)判斷點A是否在拋物線L上;
(3)求n的值;
(發(fā)現(xiàn))
通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標(biāo)為 .
(應(yīng)用)
二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com