(2006•杭州)如圖,點(diǎn)P在圓O外,PA與圓O相切于A點(diǎn),OP與圓周相交于C點(diǎn),點(diǎn)B與點(diǎn)A關(guān)于直線PO對(duì)稱(chēng),已知OA=4,PA=.求:
(1)∠POA的度數(shù);
(2)弦AB的長(zhǎng);
(3)陰影部分的面積.
【答案】分析:(1)根據(jù)AP是圓的切線,則得到△OAP是直角三角形,根據(jù)OA,PA的值,就可以∠POA的度數(shù);
(2)AB⊥PO,設(shè)AB與PO相交于點(diǎn)D,則AB=2AD,在直角△OAD中,根據(jù)三角函數(shù)就可以求出AD的長(zhǎng),從而求出AB的長(zhǎng);
(3)設(shè)陰影部分面積為s,則S=S△OAP-S扇形AOC,分別求出△OAP與扇形AOC的面積就可以求出.
解答:解:(1)∵PA是圓O的切線,切點(diǎn)是A.
∴OA⊥PA.
在Rt△APO中,tan∠POA=,
∴∠POA=60°;3分

(2)設(shè)AB與PO相交于點(diǎn)D,如圖,
∵點(diǎn)B與點(diǎn)A關(guān)于直線PO對(duì)稱(chēng),
∴AB⊥PO,且AB=2AD,
在Rt△ADO中,AD=OAsin60°=2,
∴AB=2AD=4;4分

(3)設(shè)陰影部分面積為s,
則S=S△OAP-S扇形AOC,
∵S△OAP=8,S扇形AOC=,
∴S=8().3分
點(diǎn)評(píng):本題主要考查了垂徑定理,三角函數(shù),求陰影部分的面積可以轉(zhuǎn)化為一些規(guī)則圖形的面積的和或差來(lái)計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省杭州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•杭州)如圖,△ABC、△ADE及△EFG都是等邊三角形,D和G分別為AC和AE的中點(diǎn).若AB=4時(shí),則圖形ABCDEFG外圍的周長(zhǎng)是( )

A.12
B.15
C.18
D.21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省杭州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•杭州)如圖,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求證:(1)△HEF≌△EHC;
(2)△HEF∽△HBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省杭州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•杭州)如圖,已知正方形ABCD的邊長(zhǎng)為2,△BPC是等邊三角形,則△CDP的面積是    ;△BPD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省杭州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•杭州)如圖,把△PQR沿著PQ的方向平移到△P′Q′R′的位置,它們重疊部分的面積是△PQR面積的一半,若PQ=,則此三角形移動(dòng)的距離PP′是( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省杭州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•杭州)如圖,飛機(jī)A在目標(biāo)B的正上方,在地面C處測(cè)得飛機(jī)的仰角為α,在飛機(jī)上測(cè)得地面C處的俯角為β,飛行高度為h,AC間距離為s,從這4個(gè)已知量中任取2個(gè)為一組,共有6組,那么可以求出BC間距離的有( )

A.3組
B.4組
C.5組
D.6組

查看答案和解析>>

同步練習(xí)冊(cè)答案