【題目】如圖所示,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AB于點E.
(1)求證:∠E=∠C;
(2)若⊙O的半徑為3,AD=2,試求AE的長;
(3)求△ABC的面積.

【答案】
(1)證明:如圖1:連接OB.

∵CD為圓O的直徑,

∴∠CBD=∠CBO+∠OBD=90°.

∵AE是圓O的切線,

∴∠ABO=∠ABD+∠OBD=90°.

∴∠ABD=∠CBO.

∵OB=OC,

∴∠C=∠CBO.

∴∠C=∠ABD.

∵OE∥BD,

∴∠E=∠ABD.

∴∠E=∠C


(2)解:∵⊙O的半徑為3,AD=2,

∴AO=5,∴AB=4.

∵BD∥OE,

∴BE=OD,

∴BE=3,

∴BE=6,AE=6+4=10


(3)解:∵SAOE= AEOB=15,

∵∠C=∠E,∠A=∠A,

∴△AOE∽△ABC,

=( 2=

∴SABC=15× =


【解析】(1)連接OB.先證明∠ABO、∠CBD均為直角,然后依據(jù)同角的余角相等證明∠ABD=∠CBO,接下來,結(jié)合等腰三角形的性質(zhì)和平行線的性質(zhì)進行證明即可;(2)連接OB,先求得AB的長,然后由平行線分線段成比例定理求得BE的長,最后再△BOE中依據(jù)勾股定理可求得OE的長;(3)根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將平行四邊形ABCD沿對角線BD折疊,使點A落在點A'處.若∠1=∠2=50°,則∠A'為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形OEFG和正方形ABCD是位似圖形,點F的坐標為(﹣1,1),點C的坐標為(﹣4,2),則這兩個正方形位似中心的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關(guān)注.小麗在“統(tǒng)計實習”活動中隨機調(diào)查了學校若干名學生家長對“中學生帶手機到學!爆F(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調(diào)查的家長總數(shù)及家長表示“無所謂”的人數(shù),并補全圖①;
(2)求圖②中表示家長“無所謂”的圓心角的度數(shù);
(3)從這次接受調(diào)查的家長中,隨機抽查一個,恰好是“不贊成”態(tài)度的家長的概率是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B(4、0)兩點,與y軸交于C點.

(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點,且△ATC是以AC為底的等腰三角形,求點T的坐標;
(3)M、Q兩點分別從A、B點以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行,當點M到原點時,點Q立刻掉頭并以每秒 個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動,過點M的直線l⊥x軸交AC或BC于點P.求點M的運動時間t與△APQ面積S的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017 D2017的邊長是(
A.( 2016
B.( 2017
C.( 2016
D.( 2017

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A、B重合的一個動點,延長BP到點C,使PC=PB,D是AC的中點,連接PD、PO.
(1)求證:△CDP≌△POB;
(2)填空: ①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當∠PBA的度數(shù)為時,四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校團委要組織班級歌詠比賽,為了確定一首喜歡人數(shù)最多的歌曲作為每班必唱歌曲,團委提供了代號為A,B,C,D四首備選曲目讓學生選擇(每個學生只選課一首),經(jīng)過抽樣調(diào)查后,將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖1,圖2所提供的信息,解答下列問題:
(1)在抽樣調(diào)查中,求選擇曲目代號為A的學生人數(shù)占抽樣總?cè)藬?shù)的百分比;
(2)請將圖2補充完整;
(3)若該校共有1530名學生,根據(jù)抽樣調(diào)查的結(jié)果,估計全校選擇曲目代號為D的學生有多少名?

查看答案和解析>>

同步練習冊答案