分析 (1)首先得出∠OCA+∠CAD=90°,進(jìn)而求出∠EAC+∠OAC=90°,即可得出答案.
(2)作CF⊥AE于F,根據(jù)角平分線的性質(zhì)和三角函數(shù)求得AE=$\frac{20}{3}$,DE=$\frac{16}{3}$,進(jìn)一步求得CF=CD=2,然后根據(jù)勾股定理列出關(guān)于r的方程,解方程即可求得.
解答 (1)證明:連接OA,
∵OE垂直于弦AB,
∴∠OCA+∠CAD=90°,
∵CO=OA,
∴∠OCA=∠OAC,
∵∠EAC=∠CAB,
∴∠EAC+∠OAC=90°,
∴OA⊥AE,
即直線AE是⊙O的切線.
(2)解:作CF⊥AE于F,
∵∠EAC=∠CAB,
∴CF=CD,
∵AB=8,
∴AD=4,
∵sin∠E=$\frac{3}{5}$,
∴$\frac{AD}{AE}$=$\frac{3}{5}$,$\frac{CF}{CE}$=$\frac{3}{5}$,
∴AE=$\frac{20}{3}$,DE=$\frac{16}{3}$,
∴CF=2,
∴CD=2,
設(shè)⊙O的半徑r,
在RT△AOD中,OA2=OD2+AD2,即r2=(r-2)2+42,
解得r=5.
∴⊙O的半徑為5.
點(diǎn)評(píng) 本題考查了切線的判定,角平分線的性質(zhì),三角函數(shù)的應(yīng)用以及勾股定理的應(yīng)用,熟練掌握這些性質(zhì)定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 40° | C. | 45° | D. | 50° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,8) | B. | (-3,-2) | C. | ($\frac{1}{2}$,12) | D. | (1,-6) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com