【題目】某房地產(chǎn)開發(fā)公司計劃建、兩種戶型的住房共80套,該公司所籌資金不少于萬元,但不超過萬元,且所籌資金全部用于建房,兩種戶型的建房的成本和售價如表:
()該公司對這兩種戶型住房有哪幾種方案?
()該公司如何建房獲利利潤最大?
()根據(jù)市場調(diào)查,每套型住房的售價不會改變,每套型住房的售價將會提高萬元,且所建的兩種住房可全部售出,該公司又將如何建房獲得利潤最大?
【答案】(1)答案見解析;(2)型住房套, 型住房套獲得利潤最大;(3)答案見解析.
【解析】試題分析:(1)根據(jù)“該公司所籌資金不少于2090萬元,但不超過2096萬元”,列出不等式組進行求解,確定建房方案;
(2)根據(jù):利潤=售價-成本,利潤就可以寫成關(guān)于x的函數(shù),根據(jù)函數(shù)的性質(zhì),就可以求出函數(shù)的最大值;
(3)利潤W可以用含a的代數(shù)式表示出來,對a進行分類討論.
解:()設(shè)種戶型的住房建套,則種戶型的住房建套,
由題意得,
∴,
∵取非負整數(shù),
∴為, , ,
∴有三種建房方案,
方案一: 種戶型住房建套, 種戶型的住房建套,
方案二: 種戶型住房建套, 種戶型的住房建套,
方案三: 種戶型住房建套, 種戶型的住房建套.
()設(shè)該公司建房獲得利潤(萬元),
由題意知,
∴當時, 萬元.
即型住房套, 型住房套獲得利潤最大.
()由題意知,
∴當時, , 最大,即型住房建套, 型住房套,
當時, ,三種建房方案獲得利潤相等,
當時, , 最大,即型住房建套, 型住房套.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,選擇適當?shù)姆较驌舸虬浊,可以使白?反彈后將黑球撞入袋中,此時∠1=∠2,并且∠2 +∠3=90°。如果∠3=30°,那么∠1應(yīng)等于多少度,才能保證黑球直接入袋?
(2)如圖,打臺球時,小球由A點出發(fā)撞擊到臺球桌邊CD的點O處,請用尺規(guī)作圖的方法作出小球反彈后的運動方向(不寫作法,但要保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的提高,越來越多的家庭采取分戶式采暖,降低采暖用氣價格的呼聲強烈.某市物價局對市區(qū)居民管道天然氣階梯價格制度的規(guī)定作出了調(diào)整,調(diào)整后的付款金額y(單位:元)與年用氣量(單位:m3)之間的函數(shù)關(guān)系如圖所示:
(1)宸宸家年用氣量是270m3,求付款金額.
(2)皓皓家去年的付款金額是1300元,求去年的用氣量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OC在∠BOD內(nèi).
(1)如果∠AOC和∠BOD都是直角.
①若∠BOC=60°,則∠AOD的度數(shù)是 ;
②猜想∠BOC與∠AOD的數(shù)量關(guān)系,并說明理由;
(2)如果∠AOC=∠BOD=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.
(1)求證:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米.點P、點Q是直線上的兩個動點,點P的速度為1厘米/秒,點Q的速度為2厘米/秒.點P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一樓房AB后有一假山,山坡斜面CD與水平面夾角為30°,坡面上點E處有一亭子,測得假山坡腳C與樓房水平距離BC=10米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.求樓房AB的高(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用繩子量井深:把繩子三折來量,井外余4尺;把繩子四折來量,井外余1尺,則井深和繩長分別是 ( )
A、8尺,36尺B、3尺,13尺C、10尺,34尺D、11尺,37尺
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com