【題目】如圖所示是反比例函數(shù)的圖象的一支。根據(jù)圖象回答下列問題:
(1)圖象的另一支在哪個(gè)象限?常數(shù)k的取值范圍是什么?
(2)在這個(gè)函數(shù)圖象的某一支上任意取兩點(diǎn)和。如果,那么和有怎樣的大小關(guān)系?
(3)在函數(shù)的圖象上任意取兩點(diǎn)和,且,那么和的大小關(guān)系又如何?
【答案】(1)第二象限,;(2);(3).
【解析】
(1)根據(jù)反比例函數(shù)y=(k≠0)的性質(zhì)知,當(dāng)k<0,該函數(shù)的圖象經(jīng)過第二、四象限;
(2)根據(jù)反比例函數(shù)的性質(zhì)解答;
(3)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,將A(x1,y1)和B(x2,y2)代入函數(shù)y=,求得y1和y2的符號(hào),然后比較它們的大小即可.
(1)由反比例函數(shù)的對(duì)稱性,知圖象的另一支在第二象限;
根據(jù)反比例函數(shù)的性質(zhì),知1-2k<0,
解得,k>;
(2)由該函數(shù)圖象的性質(zhì)知,當(dāng)反比例函數(shù)y=經(jīng)過第二、四象限時(shí),該函數(shù)在任意一支上y隨x的增大而增大,
∴當(dāng)x1<x2時(shí),y1<y2;
(3)由(1)知1-2k<0,
∵x1<0<x2,
∴y1=>0,y2=<0,
∴y1>y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)是線段上一點(diǎn),將沿翻折得到,且滿足. 若反比例函數(shù)圖象經(jīng)過點(diǎn),則的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分) 青少年沉迷于手機(jī)游戲,嚴(yán)重危害他們的身心健康,此問題已引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國(guó)范圍內(nèi)對(duì)12﹣35歲的“王者榮耀”玩家進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是_________;
(3)據(jù)報(bào)道,目前我國(guó)12﹣35歲“王者榮耀”玩家的人數(shù)約為2000萬(wàn),請(qǐng)估計(jì)其中12﹣23歲的人數(shù).
(4)根據(jù)對(duì)統(tǒng)計(jì)圖表的分析,請(qǐng)你為沉迷游戲的同學(xué)提一個(gè)合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P和圖形W,如果以P為端點(diǎn)的任意一條射線與圖形W最多只有一個(gè)公共點(diǎn),那么稱點(diǎn)P獨(dú)立于圖形W.
(1)如圖1,已知點(diǎn)A(-2,0),以原點(diǎn)O為圓心,OA長(zhǎng)為半徑畫弧交x軸正半軸于點(diǎn)B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)這四個(gè)點(diǎn)中,獨(dú)立于的點(diǎn)是 ;
(2)如圖2,已知點(diǎn)C(-3,0),D(0,3),E(3,0),點(diǎn)P是直線l:y=2x+8上的一個(gè)動(dòng)點(diǎn).若點(diǎn)P獨(dú)立于折線CD-DE,求點(diǎn)P的橫坐標(biāo)xp的取值范圍;
(3)如圖3,⊙H是以點(diǎn)H(0,4)為圓心,半徑為1的圓.點(diǎn)T(0,t)在y軸上且t>-3,以點(diǎn)T為中心的正方形KLMN的頂點(diǎn)K的坐標(biāo)為(0,t+3),將正方形KLMN在x軸及x軸上方的部分記為圖形W.若⊙H上的所有點(diǎn)都獨(dú)立于圖形W,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠加工一種商品,每天加工件數(shù)不超過100件時(shí),每件成本80元,每天加工超過100件時(shí),每多加工5件,成本下降2元,但每件成本不得低于70元.設(shè)工廠每天加工商品x(件),每件商品成本為y(元),
(1)求出每件成本y(元)與每天加工數(shù)量x(件)之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)若每件商品的利潤(rùn)定為成本的20%,求每天加工多少件商品時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)P在一次函數(shù)圖象上,點(diǎn)Q在反比例函數(shù)圖象上,若存在點(diǎn)P與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,我們稱二次函數(shù)為一次函數(shù)與反比例函數(shù)的“新時(shí)代函數(shù)”,點(diǎn)P稱為“幸福點(diǎn)”。
(1)判斷與是否存在“新時(shí)代函數(shù)”,如果存在,請(qǐng)求出“幸福點(diǎn)”坐標(biāo),如果不存在,請(qǐng)說明理由;
(2)若反比例函數(shù)與一次函數(shù)有兩個(gè)“幸福點(diǎn)”,和,且,求其“新時(shí)代函數(shù)”的解析式;
(3)若一次函數(shù)和反比例函數(shù)在自變量x的值滿足的情況下,其“新時(shí)代函數(shù)”的最小值為3,求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了改善辦公條件,計(jì)劃從廠家購(gòu)買兩種型號(hào)電腦.已知每臺(tái)種型號(hào)電腦價(jià)格比每臺(tái)種型號(hào)電腦價(jià)格多0.1萬(wàn)元,且用10萬(wàn)元購(gòu)買種型號(hào)電腦的數(shù)量與用8萬(wàn)購(gòu)買種型號(hào)電腦的數(shù)量相同.
(1)求兩種型號(hào)電腦每臺(tái)價(jià)格各為多少萬(wàn)元?
(2)學(xué)校預(yù)計(jì)用不多于9.2萬(wàn)元的資金購(gòu)進(jìn)這兩種電腦共20臺(tái),其中種型號(hào)電腦至少要購(gòu)進(jìn)10臺(tái),請(qǐng)問有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),按如圖方式作正方形,,,…,點(diǎn),,,…在直線上,點(diǎn),,,…在軸上,圖中陰影部分三角形的面積從左到右依次標(biāo)記為,,,…,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地下車庫(kù)出口處“兩段式欄桿”如圖①所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的連接點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF升起后的位置如圖②所示,其示意圖如圖③所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2m.現(xiàn)有一高度為2.4m的貨車要送貨進(jìn)入地下車庫(kù),問此貨車能否安全通過?請(qǐng)通過計(jì)算說明.(欄桿寬度忽略不計(jì),參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com