【題目】已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)是(﹣2,1),B點(diǎn)坐標(biāo)(1,n);

(1)求出k,b,m,n的值;

(2)求AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值的x的取值范圍.

【答案】(1)k=﹣1,b=﹣1,m=﹣2,n=﹣2;(2)SAOB=;(3)x<﹣20<x<1

【解析】

(1)將點(diǎn)A,點(diǎn)B坐標(biāo)代入兩個解析式可求k,b,m,n的值;(2)由題意可求點(diǎn)C坐標(biāo),根據(jù)△AOB的面積=△ACO面積+△BOC面積,可求△AOB的面積;(3)根據(jù)一次函數(shù)圖象在反比例圖象的上方,可求x的取值范圍

解:(1)∵反比例函數(shù)y=的圖象過點(diǎn)A(﹣2,1),B(1,n)

m=﹣2×1=﹣2,m=1×n

n=﹣2

B(1,﹣2)

∵一次函數(shù)y=kx+b的圖象過點(diǎn)A,點(diǎn)B

解得:k=﹣1,b=﹣1

∴直線解析式y=﹣x﹣1

(2)∵直線解析式y=﹣x﹣1x軸交于點(diǎn)C

∴點(diǎn)C(﹣1,0)

SAOB=×1×1+×1×2=

(3)由圖象可得:x<﹣20<x<1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣1,2),點(diǎn)A是該圖象第一象限分支上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,ACx軸交于點(diǎn)D,當(dāng)時,則點(diǎn)C的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以1cm/s的速度移動,點(diǎn)Q從C點(diǎn)出發(fā)沿CB邊向點(diǎn)B以2cm/s的速度移動.

(1)、如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?

(2)、點(diǎn)P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半.若存在,求出運(yùn)動的時間;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)DDEAC,垂足為E,過點(diǎn)EEFAB,垂足為F,連接FD.

(1)求證:DE是⊙O的切線;

(2)EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某貯水塔在工作期間,每小時的進(jìn)水量和出水量都是固定不變的.從凌晨4點(diǎn)到早8點(diǎn)只進(jìn)水不出水,8點(diǎn)到12點(diǎn)既進(jìn)水又出水,14點(diǎn)到次日凌晨只出水不進(jìn)水.下圖是某日水塔中貯水量y(立方米)與x(時)的函數(shù)圖象.

1)求每小時的進(jìn)水量;

2)當(dāng)8x12時,求yx之間的函數(shù)關(guān)系式;

3)從該日凌晨4點(diǎn)到次日凌晨,當(dāng)水塔中的貯水量不小于28立方米時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對角線BD的中點(diǎn)O的直線分別交AB、CD于點(diǎn)E、F,連接DE,BF.

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:直線與直線互為友好直線,如:直線互為友好直線

1)點(diǎn)在直線友好直線上,則________

2)直線上的點(diǎn)又是它的友好直線上的點(diǎn),求點(diǎn)的坐標(biāo);

3)對于直線上的任意一點(diǎn),都有點(diǎn)在它的友好直線上,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項(xiàng)工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當(dāng)天的枇杷售價每噸2000元,草莓售價每噸3000元,設(shè)安排其中x名工人采摘枇杷,兩種水果當(dāng)天全部售出,銷售總額達(dá)y元.

1)求yx之間的函數(shù)關(guān)系式;

2)若要求當(dāng)天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.

查看答案和解析>>

同步練習(xí)冊答案