【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且,以為邊在第一象限內(nèi)作正方形,且雙曲線經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)將正方形沿軸負(fù)方向平移得到正方形,當(dāng)點(diǎn)恰好落在雙曲線上時(shí),求的面積.
【答案】(1)5;(2)6.
【解析】
(1)過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,根據(jù)正方形的性質(zhì)以及角的計(jì)算即可證出△OBA≌△EAD(AAS),結(jié)合點(diǎn)A、B的坐標(biāo)即可得出點(diǎn)D的坐標(biāo),由點(diǎn)B的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出反比例函數(shù)解析式;
(2)再根據(jù)正方形的性質(zhì)以及點(diǎn)A、B、D的坐標(biāo)即可得出點(diǎn)C的坐標(biāo),由平移可知C與的縱坐標(biāo)相同,可求得的坐標(biāo),從而得到的長(zhǎng),即可求出的面積.
(1)過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,如圖所示,
∵四邊形ABCD為正方形,
∴∠BAD=90°,AB=AD,
∴∠OAB+∠EAD=90°,
又∵∠OAB+∠OBA=90°,
∴∠OBA=∠EAD,
在△OBA和△EAD中,,
∴△OBA≌△EAD(AAS),
∴BO=AE,OA=ED.
∵A(1,0),
∴AO=1,
∵,
∴,
∴AE=BO=4,ED=OA=1,
∴D(5,1),
將D代入,
,即;
(2)∵A(1,0),B(0,4),且四邊形ABCD為正方形,
∴C(4,5),
由可知,
由平移可知C與的縱坐標(biāo)相同,
在上,當(dāng)時(shí),,
∴(1,5),,
∵D(5,1),C(4,5),(1,5),
∴D到的距離為5-1=4,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在AD邊上,點(diǎn)F在AD的延長(zhǎng)線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E為CD的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,S□ABCD=18,則S△ABF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,AB=4,點(diǎn)P在上運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A、B重合),且∠APB=30°,設(shè)圖中陰影部分的面積為y.
(1)⊙O的半徑為 ;
(2)若點(diǎn)P到直線AB的距離為x,求y關(guān)于x的函數(shù)表達(dá)式,并直接寫(xiě)出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,則圖中陰影部分的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】選好志愿者,支持軍運(yùn)會(huì).武漢市某校團(tuán)委組織了一次八年級(jí)600名學(xué)生參加的“武漢軍運(yùn)知多少”知識(shí)大賽.為了了解本次大賽的成績(jī),隨機(jī)抽取了部分學(xué)生的成績(jī)作為樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí)80分- 100分,B級(jí)70分-79分,C級(jí)60-69分,D級(jí)0分-59分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C級(jí)對(duì)應(yīng)的扇形的圓心角是_______度;
(2)直接寫(xiě)出條形統(tǒng)計(jì)圖B級(jí)的頻數(shù)_______;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在_______等級(jí);
(4)若成績(jī)達(dá)到A級(jí)的學(xué)生可以選為志愿者,請(qǐng)估計(jì)該校八年級(jí)600名學(xué)生中可以選為志愿者學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1、圖2分別是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫(huà)出以為直角邊的直角,點(diǎn)在小正方形的頂點(diǎn)上,且;
(2)在圖2中畫(huà)出以為腰的鈍角等腰,點(diǎn)在小正方形的頂點(diǎn)上,且的面積為10.并直接寫(xiě)出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、B分別在反比例函數(shù)(x>0),(k<0,x>0)的圖象上.點(diǎn)B的橫坐標(biāo)為4,且點(diǎn)B在直線y=x﹣5上.
(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.
組別 | 時(shí)間(小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計(jì) | 1 |
請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:
(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補(bǔ)全;
(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書(shū)心得報(bào)告,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com