【題目】在△ABC中,DBC邊的中點(diǎn),E、F分別在AD及其延長線上,CEBF,連接BE、CF

1)求證:△BDF≌△CDE;

2)若AB=AC,試判斷四邊形BFCE是怎樣的四邊形,并證明你的結(jié)論.

【答案】1)證明見解析;(2)四邊形BFCE是菱形,證明見解析.

【解析】

1)由平行線的性質(zhì)得出∠ECD=FBD,∠DEC=DFB,然后再加上由中點(diǎn)得出的BD=DC,即可利用AAS證明△BDF≌△EDC;

2)先根據(jù)等腰三角形的三線合一證明ADBC,然后由(1)中的可得出DE=DF,DB=DC,最后利用對角線互相平分且互相垂直的四邊形為菱形即可證明四邊形BFCE是菱形.

1)∵CEBF,

∴∠ECD=FBD,∠DEC=DFB;

又∵DBC的中點(diǎn),

BD=DC,

∴△BDF≌△EDC(AAS)

2)四邊形BFCE是菱形.證明如下:

AB=AC,

∴△ABC是等腰三角形;

又∵BD=DC,

ADBC,

由(1)知:△BDF≌△EDC,

DE=DFDB=DC;

∴四邊形BFCE是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:如何計(jì)算平面直角坐標(biāo)系中任意兩點(diǎn)之間的距離?

探究問題:

為解決上面的問題,我們從最簡單的問題進(jìn)行研究.

探究一:在圖1中,已知線段ABA(﹣2,0),B0,3),寫出線段AO的長,BO的長,所以線段AB的長為多少;把RtAOB向右平移3個(gè)單位,再向上平移2個(gè)單位,得到RtCDE,寫出RtCDE的頂點(diǎn)坐標(biāo)C,DE,此時(shí)線段CD的長為多少,DE的長為多少,所以線段CE的長為多少.

探究二:在圖2中,已知線段AB的端點(diǎn)坐標(biāo)為Aab),Bc,d),求出圖中AB的長(用含a,b,cd的代數(shù)式表示,不必證明).

歸納總結(jié):無論線段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為Ax1,y1),Bx2,y2)時(shí)線段AB的長為多少(用含x1y1,x2y2的代數(shù)式表示,不必證明).

拓展與應(yīng)用:

運(yùn)用在圖3中,一次函數(shù)y=﹣x+3與反比例函數(shù)y=的圖象交點(diǎn)為A、B,交點(diǎn)的坐標(biāo)分別是A1,2),B2,1).

①求線段AB的長;

②若點(diǎn)Px軸上動(dòng)點(diǎn),求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由邊長為1的小正方形構(gòu)成的網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),的頂點(diǎn)在格點(diǎn)上.

1)直接寫出的面積為  ;

2)請用無刻度的直尺畫出將點(diǎn)順時(shí)針旋轉(zhuǎn)角后得到的線段,并寫出點(diǎn)的坐標(biāo)為  ;

3)若一個(gè)多邊形各點(diǎn)都不在⊙M外,則稱⊙M全覆蓋這個(gè)5多邊形,已知點(diǎn),⊙M全覆蓋四邊形,則⊙M的直徑最小為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx1與拋物線y=﹣x2+6x5相交于A、D兩點(diǎn).拋物線的頂點(diǎn)為C,連結(jié)AC

1)求A,D兩點(diǎn)的坐標(biāo);

2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),連接PA、PD

①當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求△PAD的面積;

②當(dāng)∠PDA=∠CAD時(shí),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種產(chǎn)品,其標(biāo)價(jià)比進(jìn)價(jià)每件多元,且商店用元購進(jìn)這種商品的數(shù)量和這種商品元的銷售額所售出的件數(shù)相同.

求這種商品的進(jìn)價(jià)及標(biāo)價(jià);

經(jīng)過--段時(shí)間的銷售,商店發(fā)現(xiàn),以標(biāo)價(jià)出售這種商品,每天可售出件,每漲價(jià)元,則少賣出件,要使這種商品每天的銷售額最大,求該商品每件應(yīng)漲價(jià)多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展平,再一次折疊紙片,使點(diǎn)A落在EF上的點(diǎn)A′處,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,若矩形紙片的寬AB=4,則折痕BM的長為( )

A.B.C.8D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為42,反比例函數(shù)yx0)的圖象經(jīng)過A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為( 。

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.

(1)開通隧道前,汽車從A地到B地大約要走多少千米?

(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰ABD中,AD=BD,將ABD繞腰BD的中點(diǎn)順時(shí)針旋轉(zhuǎn)180°,得到CDB,CE平分∠BCDBD于點(diǎn)E,在BC的延長線上取點(diǎn)F,使CF=DE,連接EFCD于點(diǎn)G

1)如圖1,∠A=60°,AB=4,求CF的長;

2)如圖2,求證:DE=2CG

查看答案和解析>>

同步練習(xí)冊答案