【題目】已知關(guān)于x的一元二次方程mx2+15mx50m≠0

1)求證:無論m為任何非0實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根.

2)若拋物線ymx2+15mx5m≠0)與x軸交于Ax1,0)、Bx20)兩點(diǎn),且|x1x2|6,求m的值.

【答案】1)詳見解析;(2m=m=1.

【解析】

1)根據(jù)一元二次方程根的判別式,利用平方的非負(fù)數(shù)性質(zhì)即可得答案;(2)解方程mx2+15mx5=0,可用m表示出x1、x2,根據(jù)|x1x2|6即可得答案.

1b24ac=(15m2+20m1+25m20,

∴無論m為任何非0實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根.

2)當(dāng)y=0時(shí),mx2+15mx5=0,

(mx+1)(x-5)=0,

x1=x2=5,

|x1x2|6,

=6,

-5=6-5=-6

解得:m=m=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料:思考的同學(xué)小斌在解決連比等式問題:已知正數(shù),滿足,求的值時(shí),采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個(gè)等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問題.過程如下:

解;設(shè),則有:

,,

將以上三個(gè)等式相加,得.

,都為正數(shù),

,即,.

.

仔細(xì)閱讀上述材料,解決下面的問題:

1)若正數(shù),,滿足,求的值;

2)已知,,,互不相等,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該校地下停車場(chǎng)的限高CD,在課外活動(dòng)時(shí)間測(cè)得下列數(shù)據(jù):如圖,從地面E點(diǎn)測(cè)得地下停車場(chǎng)的俯角為30°,斜坡AE的長(zhǎng)為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車場(chǎng)頂部C點(diǎn)(AC、B在同一條直線上且與水平線垂直)1.2米.

1)試求該校地下停車場(chǎng)的高度AC

2)求CD的高度,一輛高為6米的車能否通過該地下停車場(chǎng)(1.73,結(jié)果精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx22x3x軸交于點(diǎn)A(﹣1,0),點(diǎn)B3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD

1)直接寫出點(diǎn)C、D的坐標(biāo);

2)求△ABD的面積;

3)點(diǎn)P是拋物線上的一動(dòng)點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長(zhǎng)為18米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為10m),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬ABx米,面積為Sm2

1)求Sx的函數(shù)關(guān)系式,并寫出x的取值范圍;

2)如果要圍成面積為24m2的花圃,AB的長(zhǎng)是多少米?

3)能圍成面積比24m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說明圍法;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】線段在平面直角坐標(biāo)系中的位置如圖所示,為坐標(biāo)原點(diǎn).若線段上一點(diǎn)的坐標(biāo)為,則直線與線段的交點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,ACBC,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B

(1)求∠ABC'的度數(shù);

(2)C'B的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.

(1)求證:EF+AC=AB;

(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著BA的延長(zhǎng)線運(yùn)動(dòng),點(diǎn)C1A1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A1也隨之停止運(yùn)動(dòng)。如圖2A1F1平分∠BA1C1,交BD于點(diǎn)F1,過點(diǎn)F1F1E1A1C1,垂足為E1,請(qǐng)猜想E1F1A1C1AB三者之間的數(shù)量關(guān)系,并證明你的猜想;

(3)在(2)的條件下,當(dāng)A1E1=3C1E1=2時(shí),求BD的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案