【題目】在一次數(shù)學探究活動課中,某同學有一塊矩形紙片,已知,,為射線上的一個動點,將沿折疊得到,若是直角三角形,則所有符合條件的點所對應的的和為__________.
【答案】26
【解析】分析:根據(jù)軸對稱的性質分別畫出點M在線段AD上和AD的延長線上時的圖形,結合勾股定理列方程.
詳解:因為∠NCB<90°,∠NBC<90°,所以∠BNC=90°.
①如圖1,當點M在線段AD上時,由軸對稱的性質得,MN=MA,
設MN=MA=x,
Rt△CBN中,由勾股定理得CN=12,
Rt△MCD中,由勾股定理得,52+(13-x)2=(12+x)2,解得x=1.
①如圖2,當點M在線段AD延長線上時,因為∠BNM=90°,又∠BNC=90°,所以點M,C,N在一條直線上,由軸對稱的性質得,MN=MA,
設MN=MA=x,
Rt△CBN中,由勾股定理得CN=12,
Rt△MCD中,由勾股定理得,52+(x-13)2=(x-12)2,解得x=25.
則1+25=26.
故答案為26.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1.
(1)如果點A,D表示的數(shù)互為相反數(shù),那么點B表示的數(shù)是多少?
(2)如果點B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個點中,哪一點表示的數(shù)的絕對值最大?為什么?
(3)當點B為原點時,若存在一點M到A的距離是點M到D的距離的2倍,則點M所表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,BE∥AC,AE∥BD,OE與AB交于點F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達小彬家,繼續(xù)向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;
(2)求小彬家與學校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com