【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.

【答案】
(1)10;15;200
(2)解:線段BC所在直線的函數(shù)解析式為y=1500+200(x﹣15)=200x﹣1500;

線段OD所在的直線的函數(shù)解析式為y=120x.

聯(lián)立兩函數(shù)解析式成方程組,

,解得: ,

∴3000﹣2250=750(米).

答:小軍在途中與爸爸第二次相遇時,距圖書館的距離是750米.


(3)解:根據(jù)題意得:|200x﹣1500﹣120x|=100,

解得:x1= =17.5,x2=20.

答:爸爸自第二次出發(fā)至到達(dá)圖書館前,17.5分鐘時和20分鐘時與小軍相距100米.


(4)解:當(dāng)線段OD過點B時,小軍的速度為1500÷15=100(米/分鐘);

當(dāng)線段OD過點C時,小軍的速度為3000÷22.5= (米/分鐘).

結(jié)合圖形可知,當(dāng)100<v< 時,小軍在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地).


【解析】解:(1)1500÷150=10(分鐘), 10+5=15(分鐘),
(3000﹣1500)÷(22.5﹣15)=200(米/分).
故答案為:10;15;200.
(1)根據(jù)時間=路程÷速度,即可求出a值,結(jié)合休息的時間為5分鐘,即可得出b值,再根據(jù)速度=路程÷時間,即可求出m的值;(2)根據(jù)數(shù)量關(guān)系找出線段BC、OD所在直線的函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組求出交點的坐標(biāo),再用3000去減交點的縱坐標(biāo),即可得出結(jié)論;(3)根據(jù)(2)結(jié)論結(jié)合二者之間相距100米,即可得出關(guān)于x的含絕對值符號的一元一次方程,解之即可得出結(jié)論;(4)分別求出當(dāng)OD過點B、C時,小軍的速度,結(jié)合圖形,利用數(shù)形結(jié)合即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,點A、B分別在函數(shù)y1= (x>0)與y2=﹣ (x<0)的圖象上,A、B的橫坐標(biāo)分別為
a、b.

(1)若AB∥x軸,求△OAB的面積;
(2)若△OAB是以AB為底邊的等腰三角形,且a+b≠0,求ab的值;
(3)作邊長為3的正方形ACDE,使AC∥x軸,點D在點A的左上方,那么,對大于或等于4的任意實數(shù)a,CD邊與函數(shù)y1= (x>0)的圖象都有交點,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD與過點C的切線互相垂直,垂足為點D,AD交⊙O于點E,連接CE,CB.
(1)求證:CE=CB;
(2)若AC=2 ,CE= ,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關(guān)系的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以O(shè)A2為直角邊作第二個等腰直角三角形OA2A3 , 以O(shè)A3為直角邊作第三個等腰直角三角形OA3A4 , …,依此規(guī)律,得到等腰直角三角形OA2017A2018 , 則點A2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對收費(fèi)作如下調(diào)整:一天中,同一個人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計車費(fèi)

0

0.5

0.9

a

b

1.5

同時,就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

(Ⅰ)寫出a,b的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計:收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB≠AC.D、E分別為邊AB、AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件: , 可以使得△FDB與△ADE相似.(只需寫出一個)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2﹣16mx+48m(m>0)與x軸交于A,B兩點(點B在點A左側(cè)),與y軸交于點C,點D是拋物線上的一個動點,且位于第四象限,連接OD、BD、AC、AD,延長AD交y軸于點E.

(1)若△OAC為等腰直角三角形,求m的值;
(2)若對任意m>0,C、E兩點總關(guān)于原點對稱,求點D的坐標(biāo)(用含m的式子表示);
(3)當(dāng)點D運(yùn)動到某一位置時,恰好使得∠ODB=∠OAD,且點D為線段AE的中點,此時對于該拋物線上任意一點P(x0 , y0)總有n+ ≥﹣4 my02﹣12 y0﹣50成立,求實數(shù)n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價m(元/件)

當(dāng)1≤x≤20時,

當(dāng)21≤x≤30時,


(1)請計算第15天該商品單價為多少元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案