【題目】已知:如圖,在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BCEF兩點(diǎn),連結(jié)BEDF

(1)求證:DOE≌△BOF

(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說明理由.

【答案】(1)證明見解析;(2)當(dāng)∠DOE=90°時(shí),四邊形BFED為菱形,理由見解析.

【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOFASA);

2)首先利用一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.

試題解析:(1ABCD中,O為對(duì)角線BD的中點(diǎn),

∴BO=DO,∠EDB=∠FBO

△EOD△FOB

,

∴△DOE≌△BOFASA);

2)當(dāng)∠DOE=90°時(shí),四邊形BFDE為菱形,

理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD四邊形EBFD是平行四邊形,

∵∠EOD=90°∴EF⊥BD,四邊形BFDE為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:

1)以A點(diǎn)為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°△AB1C1,畫出△AB1C1

2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A2B2C2

3)作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)P.若點(diǎn)P向右平移xx取整數(shù))個(gè)單位長(zhǎng)度后落在△A2B2C2的內(nèi)部,請(qǐng)直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣ ,0)、B(3 ,0)、C(0,3)三點(diǎn),線段BC與拋物線的對(duì)稱軸相交于D.該拋物線的頂點(diǎn)為P,連接PA、AD、DP,線段AD與y軸相交于點(diǎn)E.

(1)求該拋物線的解析式;
(2)在平面直角坐標(biāo)系中是否存在點(diǎn)Q,使以Q、C、D為頂點(diǎn)的三角形與△ADP全等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由;
(3)將∠CED繞點(diǎn)E順時(shí)針旋轉(zhuǎn),邊EC旋轉(zhuǎn)后與線段BC相交于點(diǎn)M,邊ED旋轉(zhuǎn)后與對(duì)稱軸相交于點(diǎn)N,連接PM、DN,若PM=2DN,求點(diǎn)N的坐標(biāo)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的序號(hào)有
①在Rt△ABC中,∠C=90°,CD為AB邊上的中線,且CD=2,則AB=4;
②八邊形的內(nèi)角和度數(shù)為1080°;
③2、3、4、3這組數(shù)據(jù)的方差為0.5;
④分式方程 的解為x=
⑤已知菱形的一個(gè)內(nèi)角為60°,一條對(duì)角線為2 ,則另一條對(duì)角線長(zhǎng)為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:有理數(shù)xA用數(shù)軸上點(diǎn)A表示,xA叫做點(diǎn)A在數(shù)軸上的坐標(biāo);有理數(shù)xB用數(shù)軸上點(diǎn)B表示,xB叫做點(diǎn)B在數(shù)軸上的坐標(biāo).|AB|表示數(shù)軸上的兩點(diǎn)A,B之間的距離.

(1)借助數(shù)軸,完成下表:

xA

xB

xA﹣xB

|AB|

3

2

1

1

1

5

   

   

2

﹣3

   

   

﹣4

1

   

   

﹣5

﹣2

   

   

﹣3

﹣6

   

   

(2)觀察(1)中的表格內(nèi)容,猜想|AB|=   ;(用含xA,xB的式子表示,不用說理)

(3)已知點(diǎn)A在數(shù)軸上的坐標(biāo)是﹣2,且|AB|=8,利用(2)中的結(jié)論求點(diǎn)B在數(shù)軸上的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,

(1)如圖1,若點(diǎn)E,F(xiàn)分別在邊BC,CD上,AE,BF交于點(diǎn)O,且∠AOF=90°.求證:AE =BF.

(2)如圖2,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G.若DC=5,CM=2,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對(duì)角線BD的中點(diǎn)O的直線分別交AB、CD于點(diǎn)E、F,連接DE,BF.

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(-2)+(-3)+5

(2)×5÷×5

(3)12-7×(-4)+8÷(-2)

(4)-14+(2-5)2-2

(5)2÷(-2)+0÷7-(-8)×(-2)

(6)(-1)5×(-5)÷[(-3)2+2×(-5)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)慶放假時(shí),小明一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆。早上從家里出發(fā),向東走了6千米到超市買東西,然后又向東走了1.5千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里。

1)若以家為原點(diǎn),向東為正方向,用1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點(diǎn)AB、C表示出來;

2)問超市A和外公家C相距多少千米?

3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量。

查看答案和解析>>

同步練習(xí)冊(cè)答案