【題目】設(shè)都是實數(shù),且.我們規(guī)定:滿足不等式的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.

(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式.

【答案】(1)是(2) 一次函數(shù)的解析式為

【解析】試題分析:(1)根據(jù)反比例函數(shù)的單調(diào)區(qū)間進行判斷;
(2)根據(jù)新定義運算法則列出關(guān)于系數(shù)k、b的方程組 ,通過解該方程組即可求得系數(shù)k、b的值.

試題解析(1)是

由函數(shù)的圖象可知,當(dāng)時,函數(shù)值隨著自變量的增大而減少,而當(dāng)時, ; 時, ,故也有,

所以,函數(shù)是閉區(qū)間上的“閉函數(shù)”.

(2)因為一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,所以根據(jù)一次函數(shù)的圖象與性質(zhì),必有:

①當(dāng)時, ,解之得

∴一次函數(shù)的解析式為

②當(dāng)時, ,解之得

∴一次函數(shù)的解析式為

故一次函數(shù)的解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列式子正確的是(
A.(a﹣b)2=a2﹣2ab+b2
B.(a﹣b)2=a2﹣b2
C.(a﹣b)2=a2+2ab+b2
D.(a﹣b)2=a2﹣ab+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項式x3﹣xy2+x2y+x4﹣3按x的降冪排列,正確的是( 。
A.x4+x3+x2y﹣3﹣xy2
B.﹣xy2+x2y+x4+x3﹣3
C.﹣3﹣xy2+x2y+x3+x4
D.x4+x3+x2y﹣xy2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:A,D,E在同一條直線上,AD=3,DE=1,BD,DF分別為正方形ABCD,正方形DEFG的對角線,則三角形△BDF的面積為( 。

A.4.5
B.3
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

1)如圖①,若∠AOC30°,求∠DOE的度數(shù);

2)在圖①中,若∠AOCa,直接寫出∠DOE的度數(shù)(用含a的代數(shù)式表示);

3)將圖①中的∠DOC繞頂點O順時針旋轉(zhuǎn)至圖②的位置.

①探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;

②在∠AOC的內(nèi)部有一條射線OF,且∠AOC4AOF2BOEAOF,試確定∠AOF與∠DOE的度數(shù)之間的關(guān)系,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長是4,對角線AC、BD交于點O,點E在線段AC上,且OE= , 則∠ABE的度數(shù) 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了安全,請勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請說明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條流水生產(chǎn)線上L1、L2、L3、L4、L5處各有一名工人在工作,現(xiàn)要在流水生產(chǎn)線上設(shè)置一個零件供應(yīng)站P,使五人到供應(yīng)站P的距離總和最小,這個供應(yīng)站設(shè)置的位置是(  )

A. L2 B. L3 C. L4 D. 生產(chǎn)線上任何地方都一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:5+(﹣30_____

查看答案和解析>>

同步練習(xí)冊答案