【題目】如圖,,平分平分,點上,求證:.

【答案】詳見解析

【解析】

BC上取點F,使BF=BA,連接EF,由角平分線的性質(zhì)可以得出∠1=2,從而可以得出△ABE≌△FBE,可以得出∠A=5,進而可以得出△CDE≌△CFE,就可以得出CD=CF,即可得出結(jié)論.

BC上取點F,使BF=BA,連接EF,

BECE分別是∠ABC和∠BCD的平分線,

∴∠1=2,∠3=4

在△ABE和△FBE中,

,

∴△ABE≌△FBE(SAS),

∴∠A=5

ABCD

∴∠A+D=180°,

∴∠5+D=180

∵∠5+6=180°,

∴∠6=D

在△CDE和△CFE中,

∴△CDE≌△CFE(AAS),

CF=CD

BC=BF+CF

BC=AB+CD

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某劇院的觀眾席的座位為扇形,且按下列分式設(shè)置:

排數(shù)(x

1

2

3

4

座位數(shù)(y

50

53

56

59

(1)按照上表所示的規(guī)律,當x每增加1時,y如何變化?

(2)寫出座位數(shù)y與排數(shù)x之間的關(guān)系式;

(3)按照上表所示的規(guī)律,某一排可能有90個座位嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推廣陽光體育“大課間”活動,我市某中學決定在學生中開設(shè)A:實心球.B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

(1)在這項調(diào)查中,共調(diào)查了多少名學生?

(2)請計算本項調(diào)查中喜歡“立定跳遠”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;

(3)若調(diào)查到喜歡“跳繩”的5名學生中有3名男生,2名女生.現(xiàn)從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBC,AE平分∠BAC

1)若∠B=70°,∠C=30°,求;

①∠BAE的度數(shù).

②∠DAE的度數(shù).

2)探究:如果只知道∠B=C+40°,那么能求岀∠DAE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCD,點P為直線l上一點,嘗試探究并解答:

1)如圖1,若點P在兩平行線之間,∠123°∠235°,則∠3 ;

2)探究圖1∠1,∠2∠3之間的數(shù)量關(guān)系,并說明理由;

3)如圖2,若點PCD的上方,探究∠1,∠2∠3之間有怎樣的數(shù)量關(guān)系,并說明理由;

4)如圖3,若PCDPAB的平分線交于點P1,DCP1BAP1的平分線交于點P2DCP2BAP2的平分線交于點P3,,∠DCPn1∠BAPn1的平分線交于點Pn,若PCD=α,PAB=β,直接寫出APnC的度數(shù)(用含αβ的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠BAC90°,點DBC上一點,將ABD沿AD翻折后得到AED,邊AE交射線BC于點F

1)如(圖1),當AEBC時,求證:DEAC

2)若∠C2B,∠BAD0x60

①如(圖2),當DEBC時,求x的值.

②是否存在這樣的x的值,使得DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:

1)∠A和∠5是直線______和直線_____被直線_______所截而成的,∠A和∠4是直線_____和直線_____被直線_____所截而成的,∠1和∠8是直線_____和直線_____被直線___________所截而成的.

2)指出圖中所有的同位角__________,________________;指出圖中所有的內(nèi)錯角_______,________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,E、F分別是BC、AB上一點,且AFBE,AEDF交于點G

1)求證:AEDF

2)如圖2,在DG上取一點M,使AGMG,連接CM,取CM的中點P.寫出線段PDDG之間的數(shù)量關(guān)系,并說明理由.

3)如圖3,連接CG.若CGBC,則AFFB的值為   

查看答案和解析>>

同步練習冊答案