【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:如:解方程x(x+4)=6.
解:原方程可變形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接開平方并整理,得,.我們稱曉東這種解法為“平均數(shù)法”.
(1)下面是曉東用“平均數(shù)法”解方程(x+2)(x+6)=5時寫的解題過程.
解:原方程可變形,得
[(x+□)﹣〇][(x+□)+〇]=5.
(x+□)2﹣〇2=5,
(x+□)2=5+〇2.
直接開平方并整理,得x1=☆,x2=¤.
上述過程中的“□”,“〇”,“☆”,“¤”表示的數(shù)分別為 , , , .
(2)請用“平均數(shù)法”解方程:(x﹣3)(x+1)=5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.
(1)求直線和拋物線的表達式;
(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設運動時間為t秒,當t為何值時,△PDC為直角三角形?請直接寫出所有滿足條件的t的值;
(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最?若存在,求出其最小值及點M,N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場用3000元購進某種商品,由于銷售狀況良好,商場又用9000元購進這種商品,但這次的進價比第一次的進價提高了20%,購進商品比第一次的2倍還多300千克,如果商場按每千克9元出售.
求:(1)該種商品第一次的進價是每千克多少元?
(2)超市銷售完這種商品共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小李上學用的自行車,型號是24英吋(車輪的直徑為24英吋,約60厘米),為了防止在下雨天騎車時的泥水濺到身上,他想在自行車兩輪的陰影部分兩側裝上擋水的鐵皮(兩個陰影部分分別是以C、D為圓心的兩個扇形),量出四邊形ABCD中∠DAB=125°、∠ABC=115°,那么預計需要的鐵皮面積約是( 。
A. 942平方厘米 B. 1884平方厘米
C. 3768平方厘米 D. 4000平方厘米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預防“流感”,某學校對教室采用藥熏法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點燃后的時間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點燃后4分鐘燃盡,此時室內(nèi)每立方米空氣中含藥量為8毫克.
(1)求藥物燃燒時,y與x之間函數(shù)的表達式;
(2)求藥物燃盡后,y與x之間函數(shù)的表達式;
(3)研究表明,當空氣中每立方米的含藥量不低于2毫克時,才能有效殺滅空氣中的病菌,那么此次消毒有效時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有________(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com