蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時間(月份)與市場售價(元/千克)的關(guān)系如下表:
上市時間(月份)
1
2
3
4
5
6
市場售價(元/千克)
10.5
9
7.5
6
4.5
3
這種蔬菜每千克的種植成本(元/千克)與上市時間(月份)滿足一個函數(shù)關(guān)系,這個函數(shù)的圖象是拋物線的一段(如圖).
(1)寫出上表中表示的市場售價(元/千克)關(guān)于上市時間(月份)的函數(shù)關(guān)系式;
(2)若圖中拋物線過點(diǎn),寫出拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值為多少?(收益=市場售價-種植成本)
來(1)設(shè)p=kx+b.
當(dāng)x=1時,y=10.5;當(dāng)x=2時,y=9,所以,解得.所以.
(2)從拋物線的圖象可以看到C(6,2)是函數(shù)的頂點(diǎn),所以設(shè)y=a(x-6)2+2.
因?yàn)辄c(diǎn)(4,3)在二次函數(shù)圖象上,所以a(4-6)2+2=3.解得a=.
所以.
(3)設(shè)收益為,則
時,,
月上市出售這種蔬菜每千克收益最大,最大受益為元.
(1)根據(jù)表格可以得到P與x的滿足一次函數(shù)關(guān)系,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)利用“三點(diǎn)式”或者“頂點(diǎn)式”求出二次函數(shù)的解析式;(3)利用收益=售價-成本,從而得到收益與上市時間之間的二次函數(shù),利用二次函數(shù)的性質(zhì)得到上市時間以及最大收益.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過A(2,0)B(0,-6)兩點(diǎn)

(1)求該二次函數(shù)的解析式
(2)設(shè)該二次函數(shù)的對稱軸與軸交于點(diǎn)C,連結(jié)BA、BC,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,半徑為1的圓的圓心在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于四點(diǎn).拋物線軸交于點(diǎn),與直線交于點(diǎn),且分別與圓相切于點(diǎn)和點(diǎn)
(1)求拋物線的解析式;
(2)拋物線的對稱軸交軸于點(diǎn),連結(jié),并延長交圓,求的長.
(3)過點(diǎn)作圓的切線交的延長線于點(diǎn),判斷點(diǎn)是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

丁丁推鉛球的出手高度為,在如圖所示的直角坐標(biāo)系中,求鉛球的落點(diǎn)與丁丁的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

要從拋物線的圖象得到的圖象,則拋物線必須 ( )
A.向上平移1個單位;B.向下平移1個單位;
C.向左平移1個單位;D.向右平移1個單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一塊長方形鏡面玻璃的四周鑲上與它的周長相等的邊框,制成一面鏡子,鏡子的長與寬的比是2:1,已知鏡面玻璃的價格是每平方米120元,邊框的價格是每米30元,另外制作這面鏡子還需加工費(fèi)45元.設(shè)制作這面鏡子的總費(fèi)用是元,鏡子的寬是米.
(1)求之間的關(guān)系式.
(2)如果制作這面鏡子共花了195元,求這面鏡子的長和寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)(   )
A.有最大值B.有最大值C.有最小值D.有最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線與y軸的交點(diǎn)坐標(biāo)是( 。
A.(4,0)B.(-4,0)C.(0,-4)D.(0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線軸的一個交點(diǎn)A在點(diǎn)(-2,0)和(-1,0)之間(包括這兩點(diǎn)),頂點(diǎn)C是矩形DEFG上(包括邊界和內(nèi)部)的一個動點(diǎn),則

(1)       (填“”或“”);
(2)a的取值范圍是                 。

查看答案和解析>>

同步練習(xí)冊答案