【題目】如圖,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,點(diǎn)M(不與A、B重合),從點(diǎn)A出發(fā)沿AB方向以cm/s的速度向終點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過程中,過點(diǎn)M作MN⊥AB,交射線BC于點(diǎn)N,以線段MN為直角邊作等腰直角三角形MNQ,且∠MNQ=90°(點(diǎn)B、Q位于MN兩側(cè)).設(shè)△MNQ與△ABC重疊部分圖形面積為S(cm2),點(diǎn)M的運(yùn)動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示線段MN的長,MN= .
(2)當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),t= .
(3)求S與t之間的函數(shù)關(guān)系式.
【答案】(1);(2)1;(3).
【解析】
①由題目意思可知△MNQ和△ABC為等腰直角三角形,又MN⊥AB,可知MB=MN=AB-AM,可得答案.②此時(shí)MN=AM=BM,M為AB的中點(diǎn),由長度除以速度即可得出時(shí)間t.③M不與A,B重合,有分析知道MN在AB中點(diǎn)前 面積S=×時(shí)達(dá)到最小;之后面積逐漸減小.
①MN=AB-AM=,②t=S=×
當(dāng)N與C重合時(shí),設(shè)QN與AC交于D,QM與AC交于E, S=S△MNQ-S△DQE=×()2-(4-3t)2=;當(dāng)N過BC中點(diǎn)后, S=×MN2=×()2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于x的一元二次方程x2+(1﹣k)x﹣k=0 (其中k為常數(shù)).
(1)判斷方程根的情況并說明理由;
(2)若﹣1<k<0,設(shè)方程的兩根分別為m,n(m<n),求它的兩個(gè)根m和n;
(3)在(2)的條件下,若直線y=kx﹣1與x軸交于點(diǎn)C,x軸上另兩點(diǎn)A(m,0)、點(diǎn)B(n,0),試說明是否存在k的值,使這三點(diǎn)中相鄰兩點(diǎn)之間的距離相等?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個(gè)字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)M是對稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)MA+MC的值最小時(shí),求點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的長AB為5,寬BC為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AE⊥EF,EF交CD于點(diǎn)F.設(shè)BE=x,F(xiàn)C=y,則點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),能表示y關(guān)于x的函數(shù)關(guān)系的大致圖象是( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=60°,C是BO延長線上一點(diǎn),OC=12cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CB以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OA以1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,延長BC到點(diǎn)E,使CE=1,連接DE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB-BC-CD-DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△ABP和△DCE全等時(shí),t的值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于,是直徑,的切線交的延長線于點(diǎn),交于點(diǎn),交于點(diǎn),連接.
判斷與的位置關(guān)系并說明理由;
若的半徑為,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com