【題目】如圖,已知⊙O的半徑為5,直線l切⊙O于A,在直線l上取點B,AB=4.
(1)請用無刻度的直尺和圓規(guī),過點B作直線m⊥l,交⊙O于C、D(點D在點C的上方);(保留作圖痕跡,不要求寫作法)
(2)求BC的長.
【答案】(1)答案見解析;(2)2.
【解析】試題分析:(1)利用基本作圖(過一點作已知直線的垂線)作直線m得到CD;
(2)作OH⊥CD于H,連接OA、OD,如圖,利用垂徑定理得到DH=CH,則根據切線的性質得OA⊥l,易得四邊形OABH為正方形,所以OH=AB=4,BH=OA=5,然后利用勾股定理計算出DH=3,則CH=3,所以BC=BH﹣CH=2.
試題解析:解:(1)如圖,CD為所作;
(2)作OH⊥CD于H,連接OA、OD,如圖,則DH=CH.∵直線l切⊙O于A,∴OA⊥l,易得四邊形OABH為正方形,∴OH=AB=4,BH=OA=5.在Rt△ODH中,DH==3,∴CH=3,∴BC=BH﹣CH=5﹣3=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點M是射線CO上的一個動點,∠AOC=60°,則當△ABM為直角三角形時,AM的長為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題原型】如圖1,在四邊形ABCD中,∠ADC=90°,AB=AC.點E、F分別為AC、BC的中點,連結EF,DE.試說明:DE=EF.
【探究】如圖2,在問題原型的條件下,當AC平分∠BAD,∠DEF=90°時,求∠BAD的大小.
【應用】如圖3,在問題原型的條件下,當AB=2,且四邊形CDEF是菱形時,直接寫出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式:
13=×12×22
13+23=9=×22×32
13+23+33=36=×32×42
13+23+33+43=100=×42×52
回答下面的問題:
(1)猜想:13+23+33+…+(n-1)3+ n3=________.
(2)利用你得到的(1)中的結論,計算13+23+33+…+993+1003的值.
(3)計算:213+223+…+993+1003的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A、B兩點,點A在點B的左側.
(1)如圖1,當k=1時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側),是否存在實數(shù)k使得直線y=kx+1與以O、C為直徑的圓相切?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+n(m<0)的頂點為A,與x軸交于B,C兩點(點B在點C左側),與y軸正半軸交于點D,連接AD并延長交x軸于E,連AC、DC.S△DEC:S△AEC=3:4.
(1)求點E的坐標;
(2)△AEC能否為直角三角形?若能,求出此時拋物線的函數(shù)表達式;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P(1,m)、Q(n,1)在反比例函數(shù)y=的圖象上,直線y=kx+b經過點P、Q,且與x軸、y軸的交點分別為A、B兩點.
(1)求 k、b的值;
(2)O為坐標原點,C在直線y=kx+b上且AB=AC,點D在坐標平面上,順次聯(lián)結點O、B、C、D的四邊形OBCD滿足:BC∥OD,BO=CD,求滿足條件的D點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點C順時針旋轉到CE,記∠BCE=α,連接BE,DE,過點C作CF⊥DE于F,交直線BE于H.
(1)當α=60°時,如圖1,則∠BHC= ;
(2)當45°<α<90°,如圖2,線段BH、EH、CH之間存在一種特定的數(shù)量關系,請你通過探究,寫出這個關系式: (不需證明);
(3)當90°<α<180°,其它條件不變(如圖3),(2)中的關系式是否還成立?若成立,說明理由;若不成立,寫出你認為成立的結論,并簡要證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在五張正面分別寫有數(shù)字﹣2,﹣1,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不大于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數(shù)字作為a的值,然后再從剩余的卡片隨機抽一張,以其正面的數(shù)字作為b的值,請用列表法或畫樹狀圖法,求點Q(a,b)在第二象限的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com