【題目】已知:如圖,O是菱形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD,DE、CE交于點(diǎn)E.
(1)猜想:四邊形CEDO是什么特殊的四邊形?
(2)試證明你的猜想.
【答案】
(1)解:猜想:四邊形CEDO是矩形
(2)證明:∵DE∥AC,CE∥BD,
∴四邊形OCED是平行四邊形,
∵四邊形ABCD是菱形,
∴AC⊥BD,
∴∠DOC=90°,
∴四邊形OCED是矩形.
【解析】(1)猜想:四邊形CEDO是矩形;(2)根據(jù)平行四邊形的判定推出四邊形是平行四邊形,根據(jù)菱形性質(zhì)求出∠DOC=90°,根據(jù)矩形的判定推出即可;
【考點(diǎn)精析】掌握平行線的性質(zhì)和菱形的性質(zhì)是解答本題的根本,需要知道兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(8x3﹣12x2﹣4x)÷(﹣4x)=( 。
A. ﹣2x2+3xB. ﹣2x2+3x+1C. ﹣2x2+3x﹣1D. 2x2+3x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列不能進(jìn)行平方差計(jì)算的是( )
A.(x+y)(﹣x﹣y)
B.(2a+b)(2a﹣b)
C.(﹣3x﹣y)(﹣y+3x)
D.(a2+b)(a2﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,在平面直角坐標(biāo)系中,.若點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)不重合),過點(diǎn)作交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)當(dāng)的周長(zhǎng)與四邊形的周長(zhǎng)相等時(shí),求的長(zhǎng);
(3)在上是否存在點(diǎn),使得為等腰直角三角形?若存在,請(qǐng)求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.
(1)求m的值;
(2)先作的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD的邊AD在x軸上,點(diǎn)C在y軸的負(fù)半軸上,直線BC∥AD,且BC=3,OD=2,將經(jīng)過A、B兩點(diǎn)的直線l:y=﹣2x﹣10向右平移,平移后的直線與x軸交于點(diǎn)E,與直線BC交于點(diǎn)F,設(shè)AE的長(zhǎng)為t(t≥0).
(1)四邊形ABCD的面積為 ;
(2)設(shè)四邊形ABCD被直線l掃過的面積(陰影部分)為S,請(qǐng)直接寫出S關(guān)于t的函數(shù)解析式;
(3)當(dāng)t=2時(shí),直線EF上有一動(dòng)點(diǎn),作PM⊥直線BC于點(diǎn)M,交x軸于點(diǎn)N,將△PMF沿直線EF折疊得到△PTF,探究:是否存在點(diǎn)P,使點(diǎn)T恰好落在坐標(biāo)軸上?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com