【題目】某學(xué)習(xí)小組在探索各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形時(shí),進(jìn)行如下討論:

甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.

乙同學(xué):我發(fā)現(xiàn)邊數(shù)是時(shí),它也不一定是正多邊形,如圖,是正三角形,,證明六邊形的各內(nèi)角相等,但它未必是正六邊形.

丙同學(xué):我能證明,邊數(shù)是時(shí),它是正多邊形,我想,邊數(shù)是時(shí),它可能也是正多邊形.

請(qǐng)你說(shuō)明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;

請(qǐng)你證明,各內(nèi)角都相等的圓內(nèi)接七邊形(如圖)是正七邊形;(不必寫(xiě)已知,求證)

根據(jù)以上探索過(guò)程,提出你的猜想.(不必證明)

【答案】中六邊形各角相等;見(jiàn)解析;猜想:當(dāng)邊數(shù)是奇數(shù)時(shí)(或當(dāng)邊數(shù)是,,,時(shí)),各內(nèi)角相等的圓內(nèi)接多邊形是正多邊形.

【解析】

(1)利用等弧對(duì)等角證各角相等.(2)利用等弧對(duì)等弦證各邊相等.(3)根據(jù)(1)(2)猜想當(dāng)邊數(shù)是奇數(shù)時(shí),各內(nèi)角相等的圓內(nèi)接多邊形是正多邊形.

(1)證明:由圖知∠AFC對(duì).
因?yàn)?/span>,∠DAF對(duì)的
所以∠AFC=∠DAF.
因?yàn)?/span>,
所以.
∠ECF對(duì)的,
所以∠AFC=∠ECF.
同理可證∠ADB=∠DBE=∠BEC=∠ECF.
所以圖(1)中六邊形各角相等.
(2)證明:因?yàn)椤螦對(duì),∠B對(duì),∠A=∠B,
所以.
所以.
同理.
所以AB=BC=CD=DE=EF=FG=GA.
所以,七邊形ABCDEFG是正七邊形.
(3)根據(jù)(1)(2)可以猜想:當(dāng)邊數(shù)是奇數(shù)時(shí)(或當(dāng)邊數(shù)為3,5,7,9,…時(shí)),各內(nèi)角相等的圓內(nèi)接多邊形是正多邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明同學(xué)設(shè)計(jì)的已知底邊及底邊上的中線作等腰三角形的尺規(guī)作圖過(guò)程.

已知:如圖 1,線段 a 和線段 b

求作:△ABC,使得 AB = AC,BC = a,BC 邊上的中線為 b

作法:如圖

作射線 BM,并在射線 BM 上截取 BC = a

作線段 BC 的垂直平分線 PQ,PQ BC D;

D 為圓心,b 為半徑作弧,交 PQ A;

連接 AB AC

則△ABC 為所求作的圖形.

根據(jù)上述作圖過(guò)程,回答問(wèn)題:

1用直尺和圓規(guī),補(bǔ)全圖 2 中的圖形;

2)完成下面的證明:

證明:由作圖可知 BC = a,AD = b

PQ 為線段 BC 的垂直平分線,點(diǎn) A PQ 上,

AB = AC )(填依據(jù)).

線段 BC 的垂直平分線 PQ BC D,

BD=CD.( )(填依據(jù)).

AD BC 邊上的中線,且 AD = b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m),

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400 的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某電信公司提供了,兩種方案的移動(dòng)通訊費(fèi)用(元)與通話時(shí)間(分)之間的關(guān)系,則以下說(shuō)法正確的是(

①若通話時(shí)間少于120分,則方案比方案便宜

②若通話時(shí)間超過(guò)200分,則方案比方案便宜

③通訊費(fèi)用為60元,則方案比方案的通話時(shí)間多

④當(dāng)通話時(shí)間是170分鐘/時(shí),兩種方案通訊費(fèi)用相等

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(1)班為了配合學(xué)校體育文化月活動(dòng)的開(kāi)展,同學(xué)們從捐助的班費(fèi)中拿出一部分錢(qián)來(lái)購(gòu)買(mǎi)羽毛球拍和跳繩。已知購(gòu)買(mǎi)一副羽毛球拍比購(gòu)買(mǎi)一根跳繩多20元。若用200元購(gòu)買(mǎi)羽毛球拍和用80元購(gòu)買(mǎi)跳繩,則購(gòu)買(mǎi)羽毛球拍的副數(shù)是購(gòu)買(mǎi)跳繩根數(shù)的一半。

1)求購(gòu)買(mǎi)一副羽毛球拍、一根跳繩各需多少元?

2)雙11期間,商店老板給予優(yōu)惠,購(gòu)買(mǎi)一副羽毛球拍贈(zèng)送一根跳繩,如果八(1)班需要的跳繩根數(shù)比羽毛球拍的副數(shù)的倍還多,且該班購(gòu)買(mǎi)羽毛球拍和跳繩的總費(fèi)用不超過(guò)元,那么八(1)班最多可購(gòu)買(mǎi)多少副羽毛球拍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=(x2)2m與x軸交于點(diǎn)A和B,與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),若點(diǎn)A的坐標(biāo)為(1,0),直線y2=kx+b經(jīng)過(guò)點(diǎn)A,D.

(1)求拋物線的函數(shù)解析式;

(2)求點(diǎn)D的坐標(biāo)和直線AD的函數(shù)解析式;

(3)根據(jù)圖象指出,當(dāng)x取何值時(shí),y2>y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y2x28x+m滿足以下條件:當(dāng)﹣2x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)6x7時(shí),它的圖象位于x軸的上方,則m的值為( 。

A. 8 B. 10 C. 42 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C90°,AC4cm,BC3cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,沿CABC的路徑運(yùn)動(dòng)一周,且速度為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t_____時(shí),點(diǎn)P與△ABC的某兩個(gè)頂點(diǎn)構(gòu)成等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了預(yù)防“感冒”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖,F(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6毫克,請(qǐng)根據(jù)題中提供的信息,解答下列問(wèn)題:

(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為_(kāi)__,自變量x的取值范圍是___;藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_(kāi)__.

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)學(xué)生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)___分鐘后,學(xué)生才能回到教室;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案