【題目】若x=-1是方程2x+ax=0的解,則a=。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)|a|=5,|b|=7,且|a+b|=a+b,則a﹣b的值為( )
A.﹣12
B.﹣2或﹣12
C.2
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為切實減輕中小學(xué)生課業(yè)負擔(dān)、全面實施素質(zhì)教育,某中學(xué)對本校學(xué)生課業(yè)負擔(dān)情況進行調(diào)查. 在本校隨機抽取若干名學(xué)生進行問卷調(diào)查,發(fā)現(xiàn)被抽查的學(xué)生中,每天完成課外作業(yè)時間,最長不足120分鐘,沒有低于40分鐘的,且完成課外作業(yè)時間低于60分鐘的學(xué)生數(shù)占被調(diào)查人數(shù)的10%.現(xiàn)將抽查結(jié)果繪制成了一個不完整的頻數(shù)分布直方圖,如圖所示.
⑴這次被抽查的學(xué)生有 人;
⑵請補全頻數(shù)分布直方圖;
⑶被調(diào)查這些學(xué)生每天完成課外作業(yè)時間的中位數(shù)在 組(填時間范圍);
⑷若該校共有3600名學(xué)生,請估計該校大約有多少名學(xué)生每天完成課外作業(yè)時間在80分鐘以上(包括80分鐘)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下問題,不適合用普查的是( 。
A. 了解一批燈泡的使用壽命 B. 中學(xué)生參加高考時的體檢
C. 了解全校學(xué)生的課外讀書時間 D. 旅客上飛機前的安檢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4因式分解的過程.
解:設(shè)x2-4x=y,
則原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
解答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的方法是( )
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?(填“徹底”或“不徹底”).若不徹底,請直接寫出因式分解的最后結(jié)果;
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
【答案】(1)C;(2)不徹底,(x-2)4;(3)(x-1)4.
【解析】試題分析:(1)從二步到第三步運用了完全平方和公式;(2)x2-4x+4可運用完全平方差公式因式分解;(3)設(shè)x2-2x=y,將(x2-2x)(x2-2x+2)+1變形成y(y+2)+1的形式,再進行因式分解;
試題解析:
(1)運用了C,兩數(shù)和的完全平方公式;
(2)不徹底;
(x2-4x+4)2=(x-2)4
(3)設(shè)x2-2x=y.
(x2-2x)(x2-2x+2)+1
=y(y+2)+1
=y2+2y+1
=(y+1)2…………………………7分
=(x2-2x+1)2
=(x-1)4.
【題型】解答題
【結(jié)束】
24
【題目】乘法公式的探究及應(yīng)用.
探究問題
圖1是一張長方形紙條,將其剪成長短兩條后剛好能拼成圖2.
(1) (2)
(1)圖1中長方形紙條的面積可表示為_______(寫成多項式乘法的形式).
(2)拼成的圖2陰影部分的面積可表示為________(寫成兩數(shù)平方差的形式).
(3)比較兩圖陰影部分的面積,可以得到乘法公式:____.
結(jié)論運用
(4)運用所得的公式計算:
=________; =________.
拓展運用:
(5)計算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,屬于二元一次方程的是______________;
① xy +2x -y =7 ;② 4x+1=x-y ;③+y=5 ;④ x=y ;⑤ x2-y2=2
⑥ 6x-2y ;⑦ x+y+z=1 ;⑧ y(y-1)=2y2-y2+x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我市有近4萬名考生參加中考,為了解這些考生的數(shù)學(xué)成績,從中抽取1000名考生的數(shù)學(xué)成績進行統(tǒng)計分析,以下說法正確的是( )
A.這1000名考生是總體的一個樣本
B.近4萬名考生是總體
C.每位考生的數(shù)學(xué)成績是個體
D.1000名學(xué)生是樣本容量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com