【題目】已知是關于的方程的一個實數(shù)根,并且這個方程的兩個實數(shù)根恰好是等腰三角形的兩條邊長,則的周長為( )
A. 6 B. 8 C. 10 D. 8或10
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)若∠BAC=40°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)求證:EF2+BF2=2AC2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,完成證明及理由
已知:∠1=∠E,∠B=∠D
求證:AB∥CD
證明:∵ ∠1=∠E( )
∴_______∥_______ ( )
∴ ∠D+∠2=180°( )
∵ ∠B=∠D( )
∴ ∠_______+ ∠_______ = 180°( )
∴ AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)過市場調(diào)查發(fā)現(xiàn),該公司生產(chǎn)的某商品在第x天的銷售單價元件為且該商品每天的銷量件滿足關系式
已知該商品第10天的售價若按8折出售,仍然可以獲得的利潤.
求公司生產(chǎn)該商品每件的成本為多少元?
問銷售該商品第幾天時,當天的利潤最大?最大利潤是多少?
該公司每天還需要支付人工、水電和房租等其他費用共計a元,這60天內(nèi)要保證至少55天最多57天在除去各項費用后還有盈利,則a的取值范圍是______直接寫出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是( )
A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在△AFD和△CEB中,點A、E、F、C在同一條直線上.有下面四個論斷:
(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.
請用其中三個作為條件,余下一個作為結論,進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖.在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中正確的有______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綜合與實踐”學習活動準備制作一組三角形,記這些三角形分別為,用記號表示一個滿足條件的三角形,如(2,4,4)表示邊長分別為2,4,4個單位長度的一個三角形.
(1)若這些三角形三邊的長度為大于0且小于3的整數(shù)個單位長度,請用記號寫出所有滿足條件的三角形;
(2)如圖,是的中線,線段的長度分別為2個,6個單位長度,且線段的長度為整數(shù)個單位長度,過點作交的延長線于點.
①求的長度;
②請直接用記號表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=BC=10 cm,AB=12 cm,點D是AB的中點,連結CD,動點P從點A出發(fā),沿A→C→B的路徑運動,到達點B時運動停止,速度為每秒2 cm,設運動時間為秒.
(1)求CD的長;
(2)當為何值時,△ADP是直角三角形?
(3)直接寫出:當為何值時,△ADP是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com