【題目】如圖,⊙O△ABC的外接圓,BC⊙O的直徑,AE⊙O的切線,過點BBD⊥AED

1)求證:∠DBA=∠ABC;

2)如果BD=1tan∠BAD=,求⊙O的半徑.

【答案】1)證明見解析;(2

【解析】

試題(1)如圖,連接OA,由AE⊙O的切線,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到結(jié)論;

2)根據(jù)三角函數(shù)的知識可求出AD,從而根據(jù)勾股定理求出AB的長,根據(jù)三角函數(shù)的知識即可得出⊙O的半徑.

試題解析:(1)如圖,連接OA,

∵AE⊙O的切線,BD⊥AE

∴∠DAO=∠EDB=90°,

∴DB∥AO,

∴∠DBA=∠BAO,

∵OA=OB,

∴∠ABC=∠BAO,

∴∠DBA=∠ABC

2∵BD=1,tan∠BAD=,

∴AD=2

∴AB=,

∴cos∠DBA=;

∵∠DBA=∠CBA,

∴BC=

∴⊙O的半徑為2.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1,拋物線y=ax2+bx+2x軸交于A(﹣1,0),B(4,0)兩點,與y軸交于點C,連接AC,BC.D為坐標平面第四象限內(nèi)一點,且使得△ABD△ABC全等.

(1)求拋物線的表達式.

(2)請直接寫出點D的坐標,并判斷四邊形ACBD的形狀.

(3)如圖2,將△ABD沿y軸的正方形以每秒1個單位長度的速度平移,得到△A′B′D′,A′B′BC交于點E,A′D′AB交于點F.連接EF,AB′,EFAB′交于點G.設運動的時間為t(0≤t≤2)秒.

當直線EF經(jīng)過拋物線的頂點T時,請求出此時t的值;

請直接寫出點G經(jīng)過的路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù) y kx b 的圖象與 x 軸交點為 A3, 0,與 y 軸交點為 B ,且與正比例函數(shù)的圖象交于點Cm,4.

1)求點C 的坐標;

2)求一次函數(shù) y kx b 的表達式;

3)若點 P y 軸上一點,且BPC 的面積為 6,請直接寫出點 P 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BCAC=6,以BC為直徑的O與邊AB相交于點D,DEAC,垂足為點E

(1)求證:點DAB的中點;

(2)求點O到直線DE的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,射線AP△ABC的外側(cè),點B關于AP的對稱點為D,連接CD交射線AP于點E,連接BE.

(1)根據(jù)題意補全圖形;

(2)求證:CD=EB+EC

(3)求證:∠ABE=∠ACE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組做用頻率估計概率的試驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是(  )

A. 石頭、剪刀、布的游戲中小明隨機出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C. 暗箱中有1個紅球和2個黃球它們只有顏色上的區(qū)別,從中任取一球是黃球

D. 擲一個質(zhì)地均勻的正六面體骰子向上的面點數(shù)是4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學活動中,黑板上畫著如圖所示的圖形,活動前老師在準備的四張紙片上分別寫有如下四個等式中的一個等式:

AB=DC,②∠ABE=DCE, AE=DE,④∠A=D.

小明同學閉上眼睛從四張紙片中隨機抽取一張,再從剩下的紙片中隨機抽取另一張.請結(jié)合圖形解答下列兩個問題:

(1)當抽得①和②時,用①,②作為條件能判定△BEC是等腰三角形嗎?說說你的理由;

(2)請你用樹狀圖或表格表示抽取兩張紙片上的等式所有可能出現(xiàn)的結(jié)果(用序號表示),并求以已經(jīng)抽取的兩張紙片上的等式為條件,使△BEC不能構(gòu)成等腰三角形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a0)過點A(1,﹣3)、B(3,﹣3)、C(﹣1,5),頂點為M點.在拋物線上是找一點P使∠POM=90°,則P點的坐標_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,ABC和∠ACB的平分線相交于點G,過點GEFBCABEACF,過點GGDACD,下列四個結(jié)論:① EF=BE+CF;②∠BGC=90°+A③點GABC各邊的距離相等;④設GD=m,AE+AF=n,=mn. 其中正確的結(jié)論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案